
QL Assembly Language Mailing List

Issue 4

Norman Dunbar

Copyright c©2018 Norman Dunbar

PUBLISHED BY MEMYSELFEYE PUBLISHING ;-)

http://qdosmsq.dunbar-it.co.uk/downloads/AssemblyLanguage/Issue_004/Assembly_
Language_004.pdf

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain a
copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required
by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

This pdf document was created on 6/2/2018 at 18:07:10.

http://qdosmsq.dunbar-it.co.uk/downloads/AssemblyLanguage/Issue_004/Assembly_Language_004.pdf
http://qdosmsq.dunbar-it.co.uk/downloads/AssemblyLanguage/Issue_004/Assembly_Language_004.pdf
http://creativecommons.org/licenses/by-nc/3.0

Contents

1 Preface . 7

1.1 Feedback 7

1.2 Subscribing to The Mailing List 7

1.3 Contacting The Mailing List 8

2 Feedback on Issue 3 . 9

2.1 BubbleSort 9

2.1.1 Wolfgang Lenerz . 9

2.1.2 George Gwilt . 10

2.1.3 Program Content . 11

2.1.4 Program Coding . 11

2.1.5 A Suggested Alternative Program . 11

2.2 Multiprint 12

2.2.1 Wolfgang Lenerz . 12

2.3 HexDump 14

2.3.1 Wolfgang Lenerz . 14

2.3.2 George Gwilt . 14

2.4 Jump tables 15

2.4.1 George Gwilt . 15

3 ASMReformat Utility . 19

3.0.1 Settings . 20

3.0.2 Usage of ASMReformat . 21

3.0.3 Field Extraction . 21

3.1 The Source Code 22

3.2 Finally 40

4 Using the MC68020 . 41

4.1 Overview 41

4.2 Addressing Modes 41

4.2.1 Data Register Direct . 42

4.2.2 Address Register Direct . 42

4.2.3 Address Register Indirect . 42

4.2.4 Address Register Indirect with Post-Increment . 42

4.2.5 Address Register Indirect with Pre-Decrement . 42

4.2.6 Address Register Indirect with Displacement . 43

4.2.7 Address Register Indirect with Index (8 bit Displacement) 43

4.2.8 Address Register Indirect with Index (Base Displacement) 44

4.2.9 Memory Indirect Postindexed . 44

4.2.10 Memory Indirect Preindexed . 45

4.2.11 Absolute Short . 45

4.2.12 Absolute Long . 46

4.2.13 Program Counter Indirect with Displacement . 46

4.2.14 Program Counter Indirect with Index (8-Bit Displacement) 46

4.2.15 Program Counter Indirect with Index (Base Displacement) 46

4.2.16 Program Counter Memory Indirect Postindexed Mode 47

4.2.17 Program Counter Memory Indirect Preindexed Mode 47

4.2.18 Immediate Data . 48

5 Image Credits . 49

Listings

2.1 Better Bubblesort - Bug Fix 1a . 9

2.2 Better Bubblesort - Bug Fix 1b . 10

2.3 Better Bubblesort - Better Bug Fix 1b . 10

2.4 SuberBasic FOR Statement . 11

2.5 Even Better Bubblesort! . 11

2.6 Original MultiPrint . 12

2.7 Wolfgang’s MultiPrint . 13

2.8 MultiPrint String Table Example . 13

2.9 Jump Table Code Extract . 16

2.10 NET_PEEK Code Extract . 16

2.11 Improved Jump Table Code . 18

3.1 Continuation of Operands . 19

3.2 Configuration of Column Positions . 20

3.3 Executing ASMReformat . 21

3.4 ASMReformat Source - Equates etc . 22

3.5 ASMReformat Source - Configuration Section . 23

3.6 ASMReformat Source - Stack Offsets . 23

3.7 ASMReformat Source - Start Here! . 24

3.8 ASMReformat Source - Clear Buffers . 24

3.9 ASMReformat Source - Check Stack . 25

3.10 ASMReformat Source - Main Loop . 25

3.11 ASMReformat Source - Operand Continuations . 26

3.12 Example Operand Continuation . 26

3.13 ASMReformat Source - Comment Lines . 26

3.14 ASMReformat Source - Checking for Blank Lines . 27

3.15 ASMReformat Source - Checking for Content . 27

3.16 ASMReformat Source - Extracting Labels . 28

3.17 ASMReformat Source - Extracting Opcodes . 29

3.18 ASMReformat Source - Extracting Operands . 31

3.19 ASMReformat Source - Extracting Comments . 31

3.20 ASMReformat Source - Copying Input Source Lines Around 32

3.21 ASMReformat Source - Scanning the Input Lines 34

3.22 ASMReformat Source - Main Extraction Control Code 34

3.23 ASMReformat Source - Trap #3 Code . 34

3.24 ASMReformat Source - Copying Buffers Around 35

3.25 ASMReformat Source - Clearing the Input Buffer 35

3.26 ASMReformat Source - Writing Labels . 36

3.27 ASMReformat Source - Writing Opcodes . 36

3.28 ASMReformat Source - Writing Operands . 37

3.29 ASMReformat Source - Writing Comments . 37

3.30 ASMReformat Source - End of Line Feed . 38

3.31 ASMReformat Source - End of Main Loop . 39

3.32 ASMReformat Source - End of Job Code . 39

3.33 ASMReformat Source - Various Buffers . 39

4.1 Jump Table - Old Style . 43

4.2 Jump Table - New Style . 44

1. Preface

1.1 Feedback

Please send all feedback to assembly@qdosmsq.dunbar-it.co.uk. You may also send articles
to this address, however, please note that anything sent to this email address may be used in a future
issue of the eMagazine. Please mark your email clearly if you do not wish this to happen.

This eMagazine is created in LATEXsource format, aka plain text with a few formatting commands
thrown in for good measure, so I can cope with almost any format you might want to send me. As
long as I can get plain text out of it, I can convert it to a suitable source format with reasonable ease.

I use a Linux system to generate this eMagazine so I can read most, if not all, Word or MS Office
documents, Quill, Plain text, email etc formats. Text87 might be a problem though!

1.2 Subscribing to The Mailing List

This eMagazine is available by subscribing to the mailing list. You do this by sending your
favourite browser to http://qdosmsq.dunbar-it.co.uk/mailinglist and clicking on the
link “Subscribe to our Newsletters”.

On the next screen, you are invited to enter your email address twice, and your name. If you wish
to receive emails from the mailing list in HTML format then tick the box that offers you that option.
Click the Subscribe button.

An email will be sent to you with a link that you must click on to confirm your subscription. Once
done, that is all you need to do. The rest is up to me!

assembly@qdosmsq.dunbar-it.co.uk
http://qdosmsq.dunbar-it.co.uk/mailinglist

8 Chapter 1. Preface

1.3 Contacting The Mailing List

I’m rather hoping that this mailing list will not be a one-way affair, like QL Today appeared to be.
I’m very open to suggestions, opinions, articles etc from my readers, otherwise how do I know
what I’m doing is right or wrong?

I suspect George will continue to keep me correct on matters where I get stuff completely wrong, as
before, and I know George did ask if the list would be contactable, so I’ve set up an email address
for the list, so that you can make comments etc as you wish. The email address is:

assembly@qdosmsq.dunbar-it.co.uk

Any emails sent there will eventually find me. Please note, anything sent to that email address will
be considered for publication, so I would appreciate your name at the very least if you intend to
send something. If you do not wish your email to be considered for publication, please mark it
clearly as such, thanks. I look forward to hearing from you all, from time to time.

If you do have an article to contribute, I’ll happily accept it in almost any format - email, text, Word,
Libre/Open Office odt, Quill, PC Quill, etc etc. Ideally, a LATEXsource document is the best format,
because I can simply include those directly, but I doubt I’ll be getting many of those! But not to
worry, if you have something, I’ll hopefully manage to include it.

assembly@qdosmsq.dunbar-it.co.uk

2. Feedback on Issue 3

I have received some feedback from a couple of my readers - Hi Wolfgang, Hi George - on a
number of the topics covered in the last issue.

2.1 BubbleSort

2.1.1 Wolfgang Lenerz

WL: In line 76 of the bubble sort on page 17, you move the length of the string into d0. What
happens if this is a 0 length string (could happen if one were to adopt your code to become a basic
keyword, for example). In that case, lots of memory might be overwritten. Perhaps a BEQ to the
end of the routine might be useful.

ND: Yes, good catch. I admit that I always do that! George has told me off for it many times. I
though I’d learned but it appears not.

You are correct, if it was zero, it would result in lots of memory being sorted that perhaps didn’t
need to be!

This problem also appears at line 74 on page 16 too. The solution to both is simple, amend the code
to amend Listing 2.4 Bubblesort on page 16 and Listing 2.5 Better Bubblesort on page 17 to the
following, which is a corrected version on listing 2.5 on page 17 by the way.

51 ;−−
52 ; ENTRY:
53 ; For e n t r y a t l a b e l b u b b l e s o r t :
54 ;
55 ; A1 . L = S t a r t a d d r e s s o f d a t a t o be s o r t e d . Word c o u n t f i r s t .
56 ;
57 ;−−
58 ; WORKING:
59 ;

10 Chapter 2. Feedback on Issue 3

60 ; A1 . L = S t a r t Address o f d a t a t o be s o r t e d , word c o u n t f i r s t .
61 ; A2 . L = Data b e i n g compared r i g h t now . (−1(a2) and (a2)) .
62 ; A3 . L = Address o f t h e Compare and swap r o u t i n e .
63 ; D0 .W = ‘n ’ = end of u n s o r t e d d a t a .
64 ; D1 . B = Temp f o r swapping .
65 ; D2 .W = ‘ i ’ = loop c o u n t e r .
66 ; D3 .W = ‘ newn ’ = l a s t i t em s o r t e d .
67 ;−−
68 ; EXIT :
69 ;
70 ; D0 . L = 0 .
71 ; A1 . L = P r e s e r v e d − S t a r t a d d r e s s o f s o r t e d b y t e s ’ word c o u n t .
72 ; A l l o t h e r r e g i s t e r s p r e s e r v e d .
73 ;−−
74 b u b b l e s o r t
75 movem . l d1−d3 / a1−a2 ,−(a7)
76 move .w (a1) + , d0 ; N = l e n g t h (a)
77 beq . s bs_done ; Noth ing t o do , b a l e o u t
78 subq .w #1 , d0 ; We need n−1 when t e s t i n g
79 . . .

Listing 2.1: Better Bubblesort - Bug Fix 1a

And now we need a label bs_done at the end which will allow us to exit from the code if there are
no items to be sorted.

96 b s _ u n t i l
97 bne . s b s _ r e p e a t ; U n t i l n = 0
98
99 bs_done

100 movem . l (a7) + , d1−d3 / a1−a2
101 c l r . l d0
102 r t s

Listing 2.2: Better Bubblesort - Bug Fix 1b

If you wish to save time very slightly, then you could rearrange the above code as follows, because
D0 is already set to zero, there’s no need for the register to be cleared:

96 b s _ u n t i l
97 bne . s b s _ r e p e a t ; U n t i l n = 0
98 c l r . l d0
99

100 bs_done
101 movem . l (a7) + , d1−d3 / a1−a2
102 r t s

Listing 2.3: Better Bubblesort - Better Bug Fix 1b

Of course, that’s not all there is to it, as George points out below, what’s the point of sorting zero or
1 items? You need at least two to get a decent sort.

2.1.2 George Gwilt

GG:I have two comments on the bubble sort, the first concerns what the program does and the
second on how it does it.

2.1 BubbleSort 11

2.1.3 Program Content

GG:The aim is to sort a set of integers into ascending numerical order. The list is scanned several
times with successive pairs being swapped if needed to set them in the right order. Since each
comparison takes place after any previous swap it implies that the largest item must inevitably end
up at the end of the set after each scansion1.

This means that the number of items scanned can be reduced by one at each go. The algorithm
used performs all the scansions down to the last one of two items. One of the members of SQLUG
suggested that if you detected a scansion during which there were no swaps you could stop the
process at that point. This could reduce the time taken.

ND: I might not be reading the above correctly, but the algorithm used in my version does indeed
stop when it reaches the last placed item as it “knows” that all following items are already sorted.

This is facilitated by comparing D2.W with D0.W at label bs_end_if where D2.W is the counter (N)
through the array of bytes and D0.W is the index (NEWN) of the last item sorted on the previous
pass.

Having said that, it is of course true that an early exit should be made when there were no swaps
made in a pass, the array of bytes is sorted.

2.1.4 Program Coding

GG:A BASIC program expresses a FOR loop as proceeding from smaller to larger. For example:

1 FOR x = 1 t o 9

Listing 2.4: SuberBasic FOR Statement

The literal translation of that to Assembly Language requires increasing x by one during each loop
and comparing the new value of x with 9 to end the loop. However, the normal method of counting
in Assembler programs is by the use of the DBcc instructions which combine the reduction of x
from its top value to zero with the test.

2.1.5 A Suggested Alternative Program

GG:What follows is a subroutine which deals with both points. Four instructions are marked with
asterisks. These instructions are the extra ones needed for earlier detection of completion. The
instructions can be omitted if earlier detection is not wanted.

To detect if a swap has been made during the scanning of a list, the most significant bit of D2 is
used. This is set to zero at the start of each scansion and is set to 1 whenever a swap occurs during
that scansion.

This program allows for an error exit. This will occur if the word count of the string to be sorted is
less than 2. You have to have at least two items to allow any comparisons. And what is the use of
sorting a string length of one, or even zero?

ND: Yes, it’s obvious really isn’t it? Especially when someone points it out!

1 ; At e n t r y
2 ;

1An interesting word that I had never seen or heard before, that I could recall. The definition is The rhythm of a line
of poetry, or the process of examining the rhythm of a line of poetry from https://dictionary.cambridge.org/
dictionary/english/scansion

https://dictionary.cambridge.org/dictionary/english/scansion
https://dictionary.cambridge.org/dictionary/english/scansion

12 Chapter 2. Feedback on Issue 3

3 ; A1 . L = S t a r t a d d r e s s o f d a t a t o be s o r t e d . Word c o u n t f i r s t .
4 ;
5 ; At e x i t
6 ;
7 ; D0 . L = e r r o r code
8 ; A l l o t h e r r e g i s t e r s p r e s e r v e d
9

10
11
12
13 b s _ r e g r e g d1−2/ a1−2
14
15 bs_0 movem . l bs_reg ,−(sp)
16 move .w (a1) + , d2 number o f i t e m s . .
17 subq .w #2 , d2 . . l e s s 2
18 b p l bs_1 OK
19 moveq #−15 , d0 bad p a r a m e t e r . .
20 b r a bs_5 . . e r r o r e x i t
21
22 bs_1 b c l r #31 , d2 c l e a r change marker ∗∗
23 move .w d2 , d0 l e n g t h o f l i s t
24 movea . l a1 , a2 p o i n t t o s t a r t o f i t e m s
25
26 bs_2 move . b (a2) + , d1 c u r r e n t i t em . .
27 cmp . b (a2) , d1 . . compare wi th n e x t
28 b l e bs_3 no change needed
29 move . b (a2) ,−1(a2) swap . .
30 move . b d1 , (a2) . . i t e m s
31 b s e t #31 , d2 mark change o c c u r r e d ∗∗
32
33 bs_3 dbf d0 , bs_2 c o u n t l i s t
34 t s t . l d2 any changes ? . . ∗∗
35 b p l bs_4 . . no − ended ∗∗
36 dbf d2 , bs_1 s o r t s h o r t e r s t r i n g
37
38 bs_4 moveq #0 , d0 OK e x i t
39
40 bs_5 movem . l (sp) + , b s _ r e g
41 r t s

Listing 2.5: Even Better Bubblesort!

2.2 Multiprint

2.2.1 Wolfgang Lenerz

WL: In the Multiprint routine on page 22, you have the mp_loop as follows:

70 mp_loop
71 move . l a1 ,−(a7) ; Save c u r r e n t s t r i n g
72 move .w u t_mtex t , a2 ; Get t h e v e c t o r
73 j s r (a2) ; P r i n t c u r r e n t s t r i n g
74 bne . s mp_oops ; Something bad happened
75 move . l (a7) + , a1 ; S t a r t o f c u r r e n t s t r i n g
76 adda .w (a1) , a1 ; Add s i z e word

2.2 Multiprint 13

77 addq . l #3 , a1 ; P r e p a r e t o make even
78 move . l a1 , d5
79 b c l r #0 , d5 ; D5 now p o i n t s a t n e x t s t r i n g
80 move . l d5 , a1 ; Back i n t o A1

Listing 2.6: Original MultiPrint

I think this could be replaced by

71 mp_loop
72 move . l a1 , d5 ; Save c u r r e n t s t r i n g
73 adda .w (a1) , d5 ; P r e s e t p o i n t e r t o n e x t
74 move .w u t_mtex t , a2 ; Get t h e v e c t o r
75 j s r (a2) ; P r i n t c u r r e n t s t r i n g
76 bne . s mp_oops ; Something bad happened
77 addq . l #3 , d5 ; P r e p a r e t o make even
78 b c l r #0 , d5 ; D5 i s now even
79 move . l d5 , a1 ; Back i n t o A1

Listing 2.7: Wolfgang’s MultiPrint

This is not only 2 instructions shorter, it also avoids using the stack, and thus accessing memory
which is always slow.

ND: I like the stack! That’s what it’s there for. But yes, you are correct, I could have just used D5
in this manner and saved the need to push and pop pointer values to and from the stack, which is
slow memory access rather than speedy register to register access.

How much speedier is using a register? Well, unfortunately, the more recent 680xx Programmer’s2

Manuals don’t list the execution times of the instructions, but my old First Edition (1984) copy of
M68000 16/32-Bit Microprocessor Programmer’s Reference Manual lists them for the 68008 and
the 68010. The following is from the 68008 section.

To stack A1.L using Address Register Indirect with Pre-Decrement requires a grand total of 24
clock cycles.

To simply move A1.L into D5.L takes a grand total of 8 clock cycles. So Wolfgang’s method is
quite a bit faster (ok, I admit it, it’s 3 times faster for one instruction and I have two of these plus
another two that Wolfgang has omitted, so even faster still!)

WL: I also have a question which might be due to the fact that I use Qmac and you use Gwasl
which I don’t know about.

You write your strings as follows

1 s1 dc .w s1e−s1−2
2 dc . b ’ Th i s i s a demo of M u l t i P r i n t ’
3 s1e equ ∗
4 ds .w 0
5
6 s2 dc .w s2e−s2−2

Listing 2.8: MultiPrint String Table Example

We agree, I presume that if the length of the string is uneven, then label s1e points to an odd
address. Is this why you use the ds.w 0 afterwards, to make sure the following label at s2 lies at
an even address?

2Only one programmer?

14 Chapter 2. Feedback on Issue 3

Under QMAC this wouldn’t be necessary since the label at s2 starts with a dc.w and so Qmac would
put it at an even address, avoiding the unnecessary ds.w, inserting a padding byte if necessary. I
don’t know whether this is a speciality of Qmac or if Gwasl does the same, in which case the ds.w
would not be strictly necessary. (I know it doesn’t actually add a word to the code itself).

ND: You are correct. It isn’t really required as both Gwasl and Gwass automatically adjust the
address to be even when a dc.w or dc.l directive is found. The various ds.w 0 directives are not
strictly necessary.

I did have to run a quick test with both of these assemblers to be absolutely certain though!

2.3 HexDump

2.3.1 Wolfgang Lenerz

WL: At label hex_nibble in the hex_dump program, instead of stacking D4, you could move.b
d4,d2 and do all the calculations on D2. No need, then, to get D4 back from the stack.

ND: See above! I sit corrected. Thanks.

2.3.2 George Gwilt

GG: The Hexdump utility produces almost the same output as the menu item 7 of my program
NET_PEEK so I was interested to see what were the differences.

The output is identical apart from the ASCII representation being enclosed in square brackets
(NET_PEEK has none) and the unprintable characters are replaced by dot (full stop or period). The
first of these is minor but the second, printing a dot for the unprintable, makes it impossible to tell
which characters are really dots. I would regard that as a flaw, though a minor one.

ND: As I mentioned in the article, I am a frequent user of the Linux hexdump utility and decided
that I needed something similar on my QL.

To this end, the utility as published prints the data in a manner pretty close to how running the
command hexdump -C some_file.bin would. The only difference is that where I use square
brackets, hexdump uses pipe characters, aka ‘|’ instead.

Hexdump also displays unprintable characters as dots, but I wonder how NET_PEEK displays
them? I’ve never used NET_PEEK - possibly because the name implies something to do with the
QL’s network, which I’ve pretty much never used.

Does NET_PEEK display unprintable characters with a space? Or a question mark? Whatever
character is being printed will cause confusion as there will be a printable character representing an
unprintable one!

Still, as George says, it’s a minor flaw, however, it’s pretty much a standard to print a dot - I’ve seen
it on various utilities in Linux, Unix, ICL VME mainframes, IBM mainframes and even, Windows.

GG: The program differs in the method of producing the HEX. Although NET_PEEK has been
available for some time now and is expected to work on all types of QL it uses the QDOS ITOH
hex routines and these seem to be OK.

ND: I have a vague recollection of checking the QDOS version with the MT_INF trap call and if it
was 1.03 and above, I used the internal routines but if not, I used my own. Eventually though, I
gave up on having two ways to do the same thing and simply used my own for everyone.

2.4 Jump tables 15

I checked the various docs.

Note
Read on and see just how easily I get confused. I’m about to embarrass myself by getting
completely the wrong end of the stick, plus, I’ve been doing it for years! Maybe I should just
give up now while the going is good?
The penny finally dropped just after I read the docs in Tebby & Karlin.
I could have removed all this, but I’m leaving it in as a reminder that some routines don’t
work, but mainly as a reminder to myself to pay attention and learn to read properly!

Pennell states in The Sinclair QDOS Companion on page 110 that there are many QDOS vectors to
convert between various bases, but unfortunately several do not work in current versions of QDOS.
Dickens on the other hand, is more specific in his QL Advanced User Guide where he states that it
is version 1.03 of QDOS, and below, where the conversion routines do not work, and specifically
notes this against the following on pages 234 onwards:

• CN_BTOIB $104 ASCII Binary to byte.
• CN_BTOIW $106 ASCII Binary to word.
• CN_BTOIL $108 ASCII Binary to long.
• CN_HTOIB $10A ASCII Hex to byte.
• CN_HTOIW $10C ASCII Hex to word.
• CN_HTOIL $10E ASCII Hex to long.

Pennell also notes that these are broken on page 112. Apparently they contain a large number of
mistakes, and so do not work. :-(

I’ve used my own versions for many years in numerous (well, quite a few) of my programs where it
was required to avoid those bugs in QDOS versions from causing hard to track down problems if
anyone using older (JM and previous?) ROMs. I know that they work on JS ROMs as my copy of
Pennell is annotated as such for each of the above conversion routines.

I wonder if anyone still uses JM based QLs?

Tebby and Karlin in QL Technical Guide also mention that the above are fubar3 in QDOS 1.03 and
below.

Of course, if I had been paying attention, I’d have noticed that these broken routines are the ones
which convert from an ASCII string of binary or hex digits to a value on the maths stack. These are
not what I needed to use, so I checked the docs again. The various conversion from binary to ASCII
strings routines do work, and have done in all versions of QDOS it seems! One day, I’ll learn to
read4. Sigh.

2.4 Jump tables

2.4.1 George Gwilt

GG: Curiously enough NET_PEEK, as well as producing a hex dump, also makes use of a Jump
Table.

The table is exactly of the format described in Assembly_Language_003 but the coding differs
slightly, partly because there seems to have been an instruction left out in got_good_option, the
last three instructions of which are:

3FUBAR - F*d Up Beyond All Recognition!
4Somehow I doubt it!

16 Chapter 2. Feedback on Issue 3

27 l s l .w #1 , d0
28 l e a JumpTable , a2
29 j s r (a2 , d0 .w)

Listing 2.9: Jump Table Code Extract

(This is from page 39.)

The contents of (a2,d0.w) are the offset from JumpTable to the option denoted by the content of
D0.W. Alas, the actual program resides at the address whose value is the offset plus the address of
the jump table.

Here is what NET_PEEK does at this point in its program:

1 add .w d7 , d7 (a d i f f e r e d d o u b l i n g and of D7 n o t D0)
2 l e a prog , a2 The jump t a b l e
3 move .w (a2 , d7 .w) , d7 S e t D7 t o t h e o f f s e t from t h e Tab le
4 jmp (a2 , d7 .w) Jump t o t h e program

Listing 2.10: NET_PEEK Code Extract

I think that the instruction move.w (a2,d0.w),d0 must have been forgotten in the printing of
Jump Tables.

ND: Yes, this is indeed a bug, which is strange as it’s extracted from a working program. I’ll need
to check that now!

Ok, I checked. The working program does have the missing instruction present, so it’s a copy &
paste error on my part. It also uses JMP.

GG: It is a very minor point, but the doubling of D0 is carried out using LSL whereas I have used
ADD to double D7.

Is there any reason for preferring the use of LSL rather than ADD to double a number?

ND: Timings perhaps? Because I’ve always done it that way? Someone told me it was quicker? I
checked the 68008 timings for add.w d0,d0 and lsl.w #1,d0. The former takes 8 cycles while
the latter takes 12. Looks like I’ve been misinformed again! ADD is about 30% quicker.

GG: My reason is purely personal. I would always use either LSL or ASL to raise to a power of two
greater than one. However, each time I have to decide which to use. Does it make a difference? If
so what? Also I have to remember to use LSL (or ASL) instead of LSR (or ASR). I determine this
always by pointing to the left (or right) and then deducing whether the shift will make the number
bigger or smaller. The use of ADD is thus, for me, much simpler!

ND: Phew! I see what you mean, logical shifts or arithmetic ones? Who needs them when we can
simply double a number by adding it to itself!

The ARM processor doesn’t have, as far as I remember5, an instruction to shift (logical or arithmeti-
cal) one place left or right. You can use the instruction in your source code, but either the assembler
converts it to an ADD instruction, or, the bit pattern in the assembled binary code is exactly the same
as that for an ADD - it’s one or the other. (Apologies in advance if I’ve got it wrong here, my ARM
docs are not at hand!)

GG: The reason for accessing the required program by JSR rather than JMP is given on page 36.
Since NET_PEEK uses JMP I wondered if I had missed out here. However I could not easily see
how I could rewrite the code with JSR.

5I might just be thinking of Atmel AVR assembly language here actually, an 8 bit microcontroller forund in the
Arduino, for example.

2.4 Jump tables 17

I wondered how a very much simplified system would be improved by the use of JSR. Let us
suppose that there are four steps in such a program as follows:

1. Display Options.
2. Find the Choice.
3. Execute the chosen option.
4. Return to 1.

If we use JSR in step 3 then each option program must end RTS and step 4 becomes, in the main
program, the branch instruction to step 1.

If we use JMP in step 3 instead of JSR then each option program must end with a branch to step 1
and there is no such branch in the main program.

Thus using JMP instead of JSR reduces the program by one instruction - a good result, both in terms
of length and time.

ND: Yes, timings. Yet again, your version outperforms mine. JMP (a2,d7.w) takes 22 cycles plus
a further 18 for the BRA to exit each routine. JSR (a4,d7.w) requires 38 plus 32 to execute the
RTS and yet another 18 for the BRA that comprises step 4 above.

GG: What am I missing?

I examined NET_PEEK more closely and found that the final branches of some options entered
at the last few instructions of some other option. There was no set of instructions common to all
options which could have been put in the main program and obeyed after RTS from every option.
So JMP seems to be necessary for my NET_PEEK.

ND: Technically, if I’m reading the above correctly, your routines could have been called with
JSR and ended with an RTS instruction where necessary. Those routines that exit via the last few
instructions of another routine could have continued to do so. You could therefore have used JSR
instead of JMP and had the same effect, only slower!

A Further Twist

GG: Each line in the Jump Table ends " - JumpTable". When there are many items in a table it can
become tedious to type these last few characters each time.

ND: True, at least using a QL to do the source code editing. I’m afraid that I have found that after
too many years using Windows and Linux editors, that they are pretty much standard in the use of
editing keys etc.

Also, and most irritatingly, when I use CTRL+ALT+LEFT or CTRL+ALT+RIGHT to delete to the
start or end of a line, in Linux it switches my desktops around because Linux grabs the key strokes
before QPC gets them!

For those who still use Windows, you have a single desktop. In Linux, I have as many as I like,
each with different icons on the desktop, programs open in them etc. I can have my source editing
on desktop 1, assembler and QPC on desktop 2 and so on. I can switch between them at will.

I use a Linux editor to write my source code these days, and simply open it in QPC, assemble it, fix
it in QED while still in QPC. Eventually I get a working version which I save the updated source
code back to Linux for inclusion in the articles.

I use copy and paste to generate all those nasty repetitive bits. Or, indeed, sometimes I can use a
macro command in the Linux editor.

GG: A very slight change to the coding can reduce the typing. In this version each line of the table

18 Chapter 2. Feedback on Issue 3

contains the offset, not from the start of the table but from that very line. This is achieved by using
asterisk instead of the table’s name. Thus each line of the table would end " - *"

The instructions could now be:

1 l e a JumpTable (d0 .w) , a2
2 move .w (a2) , d0
3 jmp (a2 , d0 .w)

Listing 2.11: Improved Jump Table Code

The first instruction sets A2 pointing to the appropriate line in the table, not its head.

ND: Saves typing and reduces the program by another instruction too.

3. ASMReformat Utility

ASMReformat is a utility I wrote out of necessity. When I decided to upload DJToolkit to Github, I
needed to convert all the tab characters into spaces (4 per tab) and to reformat the code so that it was
consistent - labels in one column, opcodes in another column, operands in another and comments
somewhere else on the line and so on.

I started doing this manually but gave up after a while as it was tediously boring. As I was at
work, where I used to do QL stuff in my lunch hour, I decided to write a program to assist in the
onerous task of reformatting my code into something acceptable. Apart from personal desires,
if the code is on Github, then anyone who wants to can download it and amend it as they see fit.
With the original code, there were tab characters all over the place and in my setup, these set the
positions on the line to 12, 20 and 40 (operands, opcodes and comments) which the Editor SE
allowed me to do. Nowadays, I can find very few editors that allow asymmetric tabs in this manner,
so opening DJToolkit_asm in a normal editor would have messed up the code. So, tabs needed
to be converted to spaces. Of course, with only three tabs, maximum, per line, setting tabs to any
given width was going to be fraught! Some of my comments were a little all over the place too, but
that’s a smaller problem.

Given that I was at work, the options open to me were Java1, C or C++ as Oracle PL/SQL wouldn’t
really have cut the mustard! C++ it was then.

If you look on github (https://github.com/SinclairQL/DJToolkit) you will notice a file
named DJTKReformat.cpp in the tools folder. That’s the utility I wrote to do the reformatting
and while it worked fine, I’ve since discovered a bug in that it doesn’t correctly format lines where
a literal, or value, continues over more than one line, for example:

1 . . .
2 Message dc .w MessageEnd−Message−2 ; Word c o u n t
3 dc . b ’Some t e x t goes h e r e . ’ , ; To be c o n t i n u e d . . .
4 dc . b ’ And i s c o n t i n u e d here ’ ,
5 dc . b l i n e f e e d

1Which I loathe and detest with a vengeance!

https://github.com/SinclairQL/DJToolkit

20 Chapter 3. ASMReformat Utility

6 MessageEnd equ ∗
7 . . .

Listing 3.1: Continuation of Operands

A minor problem as it doesn’t prevent the reformatted code from assembling, it just doesn’t look
nice - to my mind anyway. Plus, I’m a little worried that a utility I write, which might be useful to
others, is written in such a way that you need a PC or a MAC to be able to reformat the source code
of a QL assembly language program. The only solution was a complete rewrite in assembly.

3.0.1 Settings

The program is hard coded with the following settings:

• Labels start in column 1 (or zero if that’s what your text editor says - QD, I’m looking at
you!)
• Opcodes, ie the actual instructions, start in column 12. (Aka column 11 in QD.)
• Operands, for those instructions which need them, start in column 20. (Or column 19 in QD

etc.)
• Comments, in line, start in column 40, unless, the operand has exceeded column 38, in which

case there will be a pair of spaces after the operand and the comment will begin in the next
column after those two spaces. Adjust the column numbers to suit QD as above!
• Full line comments always start with a semicolon (;), or asterisk (*) in the first column.
• Blank lines are either lines where the only character is a linefeed, or, lines where there are

no characters other than spaces, tabs and the final linefeed. This latter option is one which
the original C++ utility did not handle specifically, but the library code used did it internally.
This caused me some serious bug hunting as QD seems to have a nasty habit of silently
inserting tab characters when I don’t need or want them.
• When parsing the original source code lines for labels, opcodes, operands and comments, the

linefeed indicates the end of the input, and spaces or tabs (or the linefeed of course) indicate
the end of whatever I’m parsing at the time.
• Comments are allowed spaces and tabs. Labels, opcodes are not. Operands may allow spaces

and tabs, but only if they are wrapped in quotes - single or double.

If you do not wish to use my settings, simply locate the equates in the source code for the 4 column
places and adjust to suit your wish. I’m pretty sure that labels, in all assembler rules, must begin in
the first column of the line, where they are present.

62 ; Where t h e t e x t goes on t h e o u t p u t l i n e (s) . We need t o o f f s e t
63 ; t h e s e by −1 as we c o u n t from z e r o i n t h e b u f f e r s .
64 l a b e l P o s
65 equ 1−1 ; L a b e l s i n column 1
66 opcodePos
67 equ 12−1 ; Opcodes i n column 12
68 ope randPos
69 equ 20−1 ; Operands i n column 20
70 commentPos
71 equ 40−1 ; Comments i n column 40

Listing 3.2: Configuration of Column Positions

21

3.0.2 Usage of ASMReformat

As with many of my recent articles2, ASMReformat is written as a filter, so execution is as follows:

ew ASMReformat_bin , ’ i n p u t _ f i l e ’ , ’ o u t p u t _ f i l e ’

Listing 3.3: Executing ASMReformat

You will notice that I’ve used EW rather than EX as this returns an error code (and message) if there
are problems with the execution. If you use EX instead, you don’t see any error messages if the
utility encounters any errors in its execution.

The basic steps carried out by the utility are as follows:

• Check the correct number of channels have been supplied.
• Reads the input file in a loop, until EOF is detected. If errors occur, exit the utility.
• For each line of input read, the following processing takes place:

– If this is an operand continuation line then
∗ Extract the operand continuation.
∗ Extract any comments, if present.
∗ Format the operand & comments.
∗ Write the reformatted line to the output, followed by a newline.
∗ Skip back to the main loop again.

– If this line is entirely a comment, write it to the output file unchanged, and skip to the
main loop start again.

– If the line is blank, or has no actual content, write a blank line to the output file and
skip back to the main loop start again.

– Extract the label, if present.
– Extract the opcode (or instruction) if present.
– Determine if the opcode needs an operand to be presentt.
– Extract the operand, if one is necessary.
– Extract any comments at the end of the line.
– Reformat the line as required.

• The reformatted line is written to the output file, followed by a linefeed.
• The main loop is then executed again.
• At the end of file, the utility exits with no errors.

3.0.3 Field Extraction

To extract any of the required fields from the source line, the utility will first scan from the current
position on the line until it hits a character that is not a space or tab. Actually, it scans for anything
that is higher in the ASCII table than a space. A linefeed or character 10 ($0Ahex) indicates the end
of the extraction.

During extraction, all characters are read and buffered until a space, tab or linefeed3 is detected in
the line of text from the input file.

For labels and opcodes, the text is simply extracted until a terminating character is read. For
operands we have to be careful that we don’t prematurely end the extraction during the parsing of a
quoted string - all characters within the string are valid. Finally, comments allow all characters up
to the terminating linefeed.

2Yes, I know, it’s been a long while since the last edition. Sorry about that, but I’ve been busy!
3Once again, it’s actually any character with an ASCII code less than or equal to a space - it’s easier that way!

22 Chapter 3. ASMReformat Utility

3.1 The Source Code

Having explained briefly what is happening, I’ll now dive into the source code and attempt to
explain what is happening.

Note
By the way, I will soon have the code uploaded to Github to save you all having to type in the
long listings. When I get a chance, I’ll upload all the code from previous articles too.

1 ;−−
2 ; ASMReformat :
3 ;
4 ; A f i l t e r program u s i n g an i n p u t and o u t p u t channe l , p a s s e d on
5 ; t h e s t a c k f o r i t s f i l e s .
6 ;
7 ; EX ASMReformat_bin , i n p u t _ f i l e , o u t p u t _ f i l e _ o r _ c h a n n e l
8 ;
9 ;−−

10 ; 2 9 / 1 2 / 2 0 1 7 NDunbar C r e a t e d f o r QDOSMSQ Assembly M a i l i n g L i s t
11 ;−−
12 ; (c) Norman Dunbar , 2017 . P e r m i s s i o n g r a n t e d f o r u n l i m i t e d use
13 ; o r abuse , w i t h o u t a t t r i b u t i o n b e i n g r e q u i r e d . J u s t e n j o y !
14 ;−−
15
16 me
17 equ −1 ; Th i s j o b
18 i n f i n i t e
19 equ −1 ; For t i m e o u t s
20 e r r _ b p
21 equ −15 ; Bad p a r a m e t e r e r r o r
22 e r r _ e f
23 equ −10 ; End of f i l e
24
25
26 ; F l ag b i t s i n D5 . B :
27 inComment
28 equ 0 ; No comments on t h i s l i n e
29 noOperand
30 equ 1 ; Th i s opcode has no o p e r a n d s
31 c o n t i n u e
32 equ 2 ; Operand c o n t i n u e s on n e x t l i n e
33 l f R e q u i r e d
34 equ 3 ; Do I need t o p r i n t a l i n e f e e d ?
35
36 ; R e s e t s inComment , noOperand and l f R e q u i r e d f l a g s
37 f lagMask
38 equ %11110100 ; R e s e t f l a g s
39 lowerCase2
40 equ $2020 ; Mask t o l o w e r c a s e 2 c h a r a c t e r s
41 lowerCase1
42 equ $20 ; Mask t o l o w e r c a s e 1 c h a r a c t e r s
43
44
45 ; V a r i o u s c h a r a c t e r c o n s t a n t s .
46 l i n e f e e d

3.1 The Source Code 23

47 equ $0A ; You can p r o b a b l y g u e s s t h e s e !
48 s p a c e
49 equ $20
50 comma
51 equ ’ , ’
52 t a b
53 equ $09
54 semiColon
55 equ ’ ; ’
56 a s t e r i s k
57 equ ’∗ ’
58 dQuote
59 equ ’" ’
60 sQuote
61 equ " ’ "

Listing 3.4: ASMReformat Source - Equates etc

The first part of the listing is nothing exciting I’m afraid, it consists of a number of equates. Moving
on...

62 ; Where t h e t e x t goes on t h e o u t p u t l i n e (s) . We need t o o f f s e t
63 ; t h e s e by −1 as we c o u n t from z e r o i n t h e b u f f e r s .
64 l a b e l P o s
65 equ 1−1 ; L a b e l s i n column 1
66 opcodePos
67 equ 12−1 ; Opcodes i n column 12
68 ope randPos
69 equ 20−1 ; Operands i n column 20
70 commentPos
71 equ 40−1 ; Comments i n column 40

Listing 3.5: ASMReformat Source - Configuration Section

This is the section that allows you to reconfigure my default options to suit your code writing style.
Remember to subtract 1 from each “tab” position that you wish to use - offsets into the buffer used
to reformat the lines of code are indexed from zero. Some editors, notably QD number column
positions from zero, while others do it from 1. Strangely enough, QD numbers lines from 1 - hmmm!

72
73
74 ; S t a c k s t u f f .
75 s o u r c e I d
76 equ $02 ; O f f s e t (A7) t o i n p u t f i l e i d
77 d e s t I d
78 equ $06 ; O f f s e t (A7) t o o u t p u t f i l e i d
79 paramSize
80 equ $0A ; O f f s e t (A7) t o command s i z e
81 p a r a m S t r
82 equ $0C ; O f f s e t (A7) t o command b y t e s
83
84 ; ==
85 ; Here b e g i n s t h e code .
86 ;−−
87 ; S t a c k on e n t r y :
88 ;
89 ; $0c (a7) = b y t e s o f p a r a m e t e r + padding , i f odd l e n g t h .

24 Chapter 3. ASMReformat Utility

90 ; $0a (a7) = P a r a m e t e r s i z e word .
91 ; $06 (a7) = Outpu t f i l e c h a n n e l i d .
92 ; $02 (a7) = Source f i l e c h a n n e l i d .
93 ; $00 (a7) = How many c h a n n e l s ? Should be $02 .
94 ; ==

Listing 3.6: ASMReformat Source - Stack Offsets

The code above defines the offsets onto the stack where the utility will find the count of files that
should be on the stack - we need two of those, and where the two file IDs will be found when we
need them.

The size and contents of the command string passed are also defined here, but currently, there are
no uses for a command string for this utility and they are simply ignored. If necessary, and for a bit
of homework, you could amend the program to accept a command line consisting of 4 numbers,
comma separated, that define the desired “tab” positions for the output. It’s up to you!

95 s t a r t
96 b r a . s c h e c k S t a c k
97 dc . l $00
98 dc .w $4afb
99 name

100 dc .w name_end−name−2
101 dc . b ’ ASMReformat ’
102 name_end
103 equ ∗
104
105 v e r s i o n
106 dc .w vers_end−v e r s i o n −2
107 dc . b ’ V e r s i o n 1 . 0 0 ’
108 v e r s _ e n d
109 equ ∗
110
111
112 b a d _ p a r a m e t e r
113 moveq # e r r_bp , d0 ; Guess !
114 b r a e r r o r E x i t ; Die h o r r i b l y

Listing 3.7: ASMReformat Source - Start Here!

Finally, we get to some actual code. The section above consists of the standard QDOSMSQ job
header and some error handling for those occasions when we get too few or too many files on the
stack at runtime.

115
116 c l e a r B u f f e r s
117 l e a l a b e l B u f f e r , a0
118 c l r .w (a0) ; Noth ing i n l a b e l B u f f e r
119 l e a opcodeBuf fe r , a0
120 c l r .w (a0) ; Noth ing i n o p c o d e B u f f e r
121 l e a o p e r a n d B u f f e r , a0
122 c l r .w (a0) ; Noth ing i n o p e r a n d B u f f e r
123 l e a commentBuffer , a0
124 c l r .w (a0) ; Noth ing i n commentBuffer
125 r t s

Listing 3.8: ASMReformat Source - Clear Buffers

3.1 The Source Code 25

The subroutine above is called from the main loop to make sure that the 4 buffers used for the 4
different fields of a source code line, are empty before we read the next line from the input file.

You can see that I’ve not bothered space filling the buffers - which would slow down the processing
of a file - I simply set the word count to zero. When fields are extract from a source line, the
appropriate word counts are correctly set so there are no spurious characters left over from previous
lines to worry about.

126
127 ;−−
128 ; Check t h e s t a c k on e n t r y . We on ly r e q u i r e two c h a n n e l s and i f a
129 ; command s t r i n g i s passed , we s imp ly i g n o r e i t − f o r now anyway !
130 ; We i n i t i a l i s e t h e f l a g s i n D5 . B t o a l l o f f .
131 ;−−
132 c h e c k S t a c k
133 cmpi .w #$02 , (a7) ; Two c h a n n e l s i s a must
134 bne . s b a d _ p a r a m e t e r ; Oops
135 moveq #0 , d5 ; C l e a r a l l f l a g s

Listing 3.9: ASMReformat Source - Check Stack

A simple check of the number of opened files is done first. If we have two file IDs then we are good
to go, otherwise, we bale out with a bad parameter error.

136
137 s t a r t L o o p
138 moveq # i n f i n i t e , d3 ; Timeout − p r e s e r v e d t h r o u g h o u t
139
140 ;−−
141 ; C l e a r a l l t h e b u f f e r s and s e t up f o r t h e n e x t r e a d of t h e i n p u t
142 ; f i l e . On EOF , we a r e done here , on e r r o r , we e x i t . Th i s w i l l r e t u r n
143 ; t h e e r r o r code t o SuperBASIC on ly i f we EXEC_W/EW t h e program , EX
144 ; w i l l n e v e r show t h e e r r o r .
145 ;−−
146 readLoop
147 a n d i . b # f lagMask , d5 ; R e s e t some f l a g s
148 b s r . s c l e a r B u f f e r s ; C l e a r a l l b u f f e r s
149 move . l s o u r c e I d (a7) , a0 ; I n p u t c h a n n e l i d
150 l e a i n p u t B u f f e r +2 , a1 ; B u f f e r f o r r e a d t o use
151 move . l a1 , a4 ; i n p u t P o i n t e r f o r l a t e r
152 moveq # i o _ f l i n e , d0 ; F e t c h a l i n e and LF
153 move .w #1024 , d2 ; Maximum b u f f e r s i z e = 1024
154 t r a p #3 ; Read n e x t l i n e
155 t s t . l d0 ; Did i t work ?
156 beq . s c h e c k C o n t i n u e ; Not EOF yet , c a r r y on
157 cmpi . l # e r r _ e f , d0 ; EOF?
158 beq a l l D o n e ; No , e x i t t h e main loop
159 b r a e r r o r E x i t ; Something bad happened t h e n

Listing 3.10: ASMReformat Source - Main Loop

Here we begin the main loop. First of all, and just before we start it, we set an infinite timeout in
D3. We only have to do this once as that register is preserved throughout all the calls we make to
QDOSMSQ.

The loop begins by clearing out some flags that may have been set on the previous pass. These
flags indicate the there was a comment on the previous line, that the previous line’s opcode did not

26 Chapter 3. ASMReformat Utility

require an operand and the previous line required to be followed by a linefeed. We do not clear the
continuation flag as we may still be processing a continuation line.

The code reads up to 1024 characters, including the linefeed, from the input file. Any errors, other
than EOF, cause the utility to abort, hopefully returning the error code to SuperBASIC as it dies
horribly! At EOF, the utility exits quietly and without any fuss.

160
161 ;−−
162 ; The r e a d was ok , so we need t o check i f t h i s l i n e i s a c o n t i n u a t i o n
163 ; o f t h e ope rand from t h e p r e v i o u s l i n e . We a l s o s t o r e t h e word c o u n t
164 ; o f t h e s t r i n g j u s t r e a d a t t h e s t a r t o f t h e i n p u t b u f f e r .
165 ;−−
166 c h e c k C o n t i n u e
167 move .w d1 ,−2(a4) ; Save t h e s t r i n g s i z e
168 b t s t # c o n t i n u e , d5 ; C o n t i n u a t i o n s e t ?
169 beq . s checkAllComment ; No , s k i p
170
171 ;−−
172 ; We a r e on a c o n t i n u a t i o n l i n e , so e x t r a c t t h e ope rand and t h a t w i l l
173 ; a l s o r e s e t / s e t t h e c o n t i n u a t i o n f l a g i f n e c e s s a r y f o r a f u r t h e r
174 ; c o n t i n u a t i o n o f t h e ope rand .
175 ;−−
176 doCon t inue
177 b c l r # l f R e q u i r e d , d5 ; Noth ing p r i n t e d y e t
178 b s r e x t r a c t O p e r a n d ; E x t r a c t ope rand and s e t f l a g
179 b s r ex t rac tComment ; Grab any comments a s w e l l
180 b s r c l e a r B u f f e r ; We a lways do t h i s h e r e
181 move . l d e s t I D (a7) , a0 ; Outpu t c h a n n e l Id
182 b r a doOperand ; And c o n t i n u e from t h e r e

Listing 3.11: ASMReformat Source - Operand Continuations

The code above processes any operand continuation lines. These are lines such as the following
example:

. . .
Message dc .w MessageEnd−Message−2

dc . b ’ Th i s i s t h e s t a r t o f t h e t e x t , ’ , ; To be c o n t i n u e d
=⇒ . . .

dc . b ’ and t h i s i s t h e end . ’ ,
dc . b l i n e f e e d
. . .

Listing 3.12: Example Operand Continuation

As you see there some instructions (or assembler directives) can have their operand split over many
lines by the use of a trailing comma (before any comments of course).

The section of code under discussion checks the flag and if set, the previous line was part of
a continuation. In this case, we call the subroutines that extract an operand and any following
comments, clear the input buffer - which is now being used as the output buffer, grab the output
file ID and branch to the code which writes out the operand followed by the comments, if present.
From there, the code will return to the start of the main loop to process the next line of input, which
may also be a continuation.

183
184 ;−−

3.1 The Source Code 27

185 ; I s t h i s l i n e c o m p l e t e l y a comment l i n e − i n o t h e r words , i s t h e
186 ; f i r s t c h a r a c t e r a ’∗ ’ o r a ’ ; ’ which i n d i c a t e s t h a t i t i s a comment
187 ; l i n e . Wr i t e i t t o t h e o u t p u t , unchanged , i f so , t h e n r e a d t h e n e x t
188 ; l i n e .
189 ;−−
190 checkAllComment
191 cmpi . b # semiColon , (a4) ; Comment f l a g ?
192 beq . s doWriteComment ; Yes
193 cmpi . b # a s t e r i s k , (a4) ; Or a comment f l a g ?
194 bne . s checkBlank ; Not t h i s kind , no .
195
196 doWriteComment
197 move . l d e s t I D (a7) , a0 ; Outpu t c h a n n e l Id
198 l e a i n p u t B u f f e r , a1 ; B u f f e r t o w r i t e
199 b s r doWri te ; Wr i t e o u t a l i n e
200 b r a . s readLoop ; And go around a g a i n

Listing 3.13: ASMReformat Source - Comment Lines

If this line of source code is not a continuation, then the code above attempts to find out if it is a
single line comment. Quite simply, if there is a semicolon (;) or an asterisk (*) in the first column,
it’s a comment line and if so, we simply write it to the output channel unchanged, then skip back to
the top of the main loop.

201
202 ;−−
203 ; I f D1 .W = 1 we must assume i t i s a l i n e f e e d only , so t h i s l i n e i s
204 ; b l a n k . In t h i s c a s e we s imp ly w r i t e i t o u t .
205 ;−−
206 checkBlank
207 cmpi .w #1 , d1 ; L i n e f e e d on ly r e a d i n ?
208 beq . s doWriteComment ; P r i n t o u t b l a n k l i n e .

Listing 3.14: ASMReformat Source - Checking for Blank Lines

Assuming that the source line read in is not a comment line, is it a completely blank line? These
are easily determined as the line length put into D1.W by the read routine includes the linefeed. If
the counter happens to be 1, then we must only have read a linefeed character.

If this is the case, we skip off to doWriteComment where we simply write out the input buffer to
the output then return to the top of the main loop. This effectively writes a linefeed to the output
file - as we desire.

209
210 ;−−
211 ; Does t h e l i n e a c t u a l l y have any c o n t e n t , i f n o t j u s t a l i n e f e e d ?
212 ; Can you t e l l I g o t t r a p p e d i n t h i s ? A4 = f i r s t c h a r a c t e r o f t h e
213 ; i n p u t b u f f e r , j u s t a f t e r t h e word c o u n t .
214 ; C a l l i n g scanForward a d j u s t s A4 t o t h e f i r s t non t a b / s p a c e c h a r a c t e r
215 ; i n t h e i n p u t b u f f e r . I f A4 p o i n t s a t a l i n e f e e d , t h e l i n e i s b l a n k .
216 ;−−
217 c h e c k C o n t e n t
218 b s r scanForward ; Re tu r n A4 a t f i r s t c h a r a c t e r
219 cmpi . b # l i n e f e e d , (a4) ; I s l i n e b l a n k ?
220 bne . s g o t C o n t e n t ; We have c o n t e n t − e x t r a c t i t
221
222 ;−−

28 Chapter 3. ASMReformat Utility

223 ; We have h i t t h e l i n e f e e d , so t h e r e ’ s no a c t u a l c o n t e n t on t h i s l i n e
224 ; on ly t a b s and / o r s p a c e s . P r i n t a b l a n k l i n e t o t h e o u t p u t .
225 ;−−
226 go tNoConten t
227 move . l d e s t I d (a7) , a0 ; Outpu t c h a n n e l ID
228 b s r doLineFeed ; P r i n t a l i n e f e e d
229 b r a readLoop ; Go around
230
231 ;−−
232 ; We do have c o n t e n t , so go p r o c e s s i t .
233 ;−−
234 g o t C o n t e n t
235 l e a i n p u t B u f f e r +2 , a4 ; R e s e t i n p u t p o i n t e r
236 b r a e x t r a c t D a t a ; No , do t h e n e c e s s a r y

Listing 3.15: ASMReformat Source - Checking for Content

Originally, I thought that the above check for blank lines would suffice, after all, it’s how I make a
blank line - simply press the ENTER key. However, QD seems to have other ideas and I spent a lot
of time hunting down a nasty bug whereby the output file was all over the place.4

I eventually discovered the problem by running the HexDump utility from a previous issue of this
somewhat irregular eComic, and that showed that the blank lines in question had spaces, tabs and
other invisible character and did not consist of a single linefeed after all. Sigh.

The code above was written so that whenever a line is not blank, or suspected of not being blank, it
will be scanned to see if there are characters that make it a valid source line.

The code calls scanForward to do this and the character pointed to by A4 on return is either a
linefeed for the end of the input text, or a character which is above the space in the ASCII charts - a
printable character in other words.

If we have a linefeed, we skip off to write a linefeed to the output and rejoin the main loop at the top
again, otherwise, we have got some content on the line and must process it. That processing starts a
little way down the listing, so we skip over the following subroutines - which are involved in the
extraction of the various fields in a source code line - to the code at label extractData which we
can find at line 493 below. Did I mention that there are a few subroutines coming up next?

237
238 ;−−
239 ; Copy any l a b e l from t h e i n p u t B u f f e r t o t h e l a b e l B u f f e r . A4 i s t h e
240 ; i n p u t b u f f e r and we s h o u l d be s i t t i n g a t t h e s t a r t .
241 ; We assume t h e r e w i l l be no l a b e l − most assembly l i n e s have no
242 ; l a b e l − and check from t h e r e . A l a b e l has a non−s p a c e / t a b / n e w l i n e
243 ; i n t h e f i r s t c h a r a c t e r , a n y t h i n g e l s e i s assumed t o be a l a b e l . As
244 ; a l l t h o s e non− l a b e l c h a r a c t e r s a r e l e s s t h a n a s p a c e (ASCII) t h e n
245 ; a s i m p l e t e s t f o r a n y t h i n g lower o r e q a l t o a s p a c e i s done .
246 ;−−
247 e x t r a c t L a b e l
248 cmpi . b # space , (a4) ; F i r s t c h a r a c t e r a s p a c e ?
249 b l s . s e x t r a c t L a b e l D o n e ; Yes , e x i t − no l a b e l
250
251 ;−−
252 ; We have a l a b e l , copy i t t o t h e l a b e l B u f f e r . Keep a c o u n t o f c h a r s
253 ; c o p i e d i n D0 .

4A technical term!

3.1 The Source Code 29

254 ;−−
255 l e a l a b e l B u f f e r +2 , a5 ; Our o u t p u t b u f f e r
256
257 doCopyText
258 move . l a5 , a1 ; Save b u f f e r
259 b s r copyText ; Go copy i t
260
261 e x t r a c t L a b e l D o n e
262 r t s

Listing 3.16: ASMReformat Source - Extracting Labels

The subroutine above extracts labels from the start of a line. If the character at the start of the line is
higher up the ASCII charts than a space character is, then we consider this to be a label and extract
it using the copyText code, coming soon.

Labels are copied from the input buffer to the label buffer.

263
264 ;−−
265 ; Copy any opcode from t h e i n p u t B u f f e r t o t h e l a b e l B u f f e r . A4 s h o u l d
266 ; be t h e f i r s t c h a r a c t e r i n t h e i n p u t B u f f e r . I f t h e e x t r a c t e d opCode
267 ; doesn ’ t need an operand , we s e t t h a t f l a g a c c o r d i n g l y .
268 ;
269 ; Th i s r o u t i n e l e a v e s A5 1 b y t e p a s t t h e l a s t c h a r a c t e r r e a d i f t h e
270 ; opcode i s NOT 3 or 5 i n s i z e − o t h e r w i s e i t w i l l be t h e a d d r e s s o f
271 ; t h e 1 s t o r 3 rd c h a r a c t e r read , depend ing on t h e opcode . See below .
272 ;−−
273 e x t r a c t O p c o d e
274 l e a o p c o d e B u f f e r +2 , a5 ; Outpu t b u f f e r
275 b s r . s doCopyText ; E x t r a c t & copy opcode
276
277 ;−−
278 ; A5 now p o i n t s one p a s t t h e l a s t c h a r a c t e r c o p i e d . A1 i s s t i l l
279 ; p o i n t i n g a t t h e f i r s t c h a r a c t e r r e a d . D0 i s t h e s i z e o f t h e opcode .
280 ; I f t h e opcode i s n o t 3 o r 5 i n s i z e , i t needs an ope rand .
281 ; The noOperand f l a g i s c u r r e n t l y r e s e t a s p e r t h e s t a r t o f readLoop .
282 ;−−
283 checkThree
284 cmpi .w #3 , d0 ; Did we g e t t h r e e c h a r a c t e r s ?
285 beq . s doThreeF ive ; Yes , s k i p
286
287 c h e c k F i v e
288 cmpi .w #5 , d0 ; Did we g e t 5 c h a r a c t e r s ?
289 beq . s doThreeF ive ; Yes , s k i p
290
291 n o t T h r e e F i v e
292 r t s ; We need an ope rand
293
294 ;−−
295 ; We g e t h e r e i f t h e opcode i s 3 o r 5 c h a r a c t e r s , now , i s i t one o f
296 ; t h e ones we want ?
297 ; We check t h e f i r s t 2 c h a r a c t e r s f o r ’ no ’ , ’ r t ’ , ’ re ’ o r ’ t r ’ and i f
298 ; found we have t o check t h e r e m a i n d e r o f t h e opcode t o s e e i f i t i s
299 ; one which doesn ’ t r e q u i r e an ope rand .
300 ;
301 ; These a r e : nop , r e s e t , r t e , r t r , r t s , t r a p v .

30 Chapter 3. ASMReformat Utility

302 ;
303 ; R e s e t and t r a p v a r e ea sy as t h e y a r e t h e on ly 5 c h a r a c t e r opcodes
304 ; s t a r t i n g wi th ’ re ’ o r ’ t r ’ and t h e y bo th do n o t t a k e o p e r a n d s .
305 ;−−
306 doThreeF ive
307 move . l a1 , a5 ; Save f i r s t c h a r a c t e r s t a r t
308 move .w (a1) , d1 ; Get f i r s t 2 c h a r a c t e r s
309 o r i .w # lowerCase2 , d1 ; Make lower c a s e
310 cmpi .w # ’ no ’ , d1 ; NO f o r NOP
311 beq . s doNO ; Yes , s k i p
312 cmpi .w # ’ r t ’ , d1 ; RT f o r RTE , RTR, RTS
313 beq . s doRT ; Yes , s k i p
314 cmpi .w # ’ re ’ , d1 ; RE f o r RESET
315 beq . s doTRRE ; Yes , s k i p
316 cmpi .w # ’ t r ’ , d1 ; TR f o r TRAPV
317 bne . s n o t T h r e e F i v e ; No , e x i t
318
319 ;−−
320 ; Th i s c o u l d be t r a p v or r e s e t . . . which as t h e y a r e t h e on ly 5
321 ; c h a r a c t e r opcodes t h a t s t a r t s w i th ’ t r ’ o r ’ re ’ we must have a h i t .
322 ; E x i t w i th A5 p o i n t i n g a t t h e 1 s t c h a r a c t e r o f t h e opcode .
323 ;−−
324 doTRRE
325 b s e t # noOperand , d5 ; There i s no ope rand
326 r t s ; Done
327
328 ;−−
329 ; Th i s c o u l d be r t e , r t r , r t s . . .
330 ; E x i t w i th A5 p o i n t i n g a t t h e t h i r d c h a r a c t e r o f t h e opcode .
331 ;−−
332 doRT
333 addq . l #2 , a5 ; Next two c h a r a c t e r s
334 move . b (a5) , d1 ; Only need 1 c h a r a c t e r
335 o r i . b # lowerCase1 , d1 ; Make lower c a s e
336 cmpi . b # ’ e ’ , d1 ; RTE?
337 beq . s doTRRE ; Yes
338 cmpi . b # ’ r ’ , d1 ; RTR?
339 beq . s doTRRE ; Yes
340 cmpi . b # ’ s ’ , d1 ; RTS?
341 beq . s doTRRE ; Yes
342 r t s ; I t ’ s n o t one o f t h e above
343
344 ;−−
345 ; Th i s c o u l d be nop . . .
346 ; E x i t w i th A5 p o i n t i n g a t t h e t h i r d c h a r a c t e r o f t h e opcode .
347 ;−−
348 doNO
349 addq . l #2 , a5 ; Next two c h a r a c t e r s
350 move . b (a5) , d1 ; Only need 1 c h a r a c t e r
351 o r i . b # lowerCase1 , d1 ; Make lower c a s e
352 cmpi . b # ’p ’ , d1 ; NOP?
353 beq . s doTRRE ; Yes
354 r t s ; I t ’ s n o t NOP

Listing 3.17: ASMReformat Source - Extracting Opcodes

3.1 The Source Code 31

The subroutine above extracts opcodes from the input line. It does this by calling the copyText
subroutine. Opcodes are copied from the input buffer to the opcode buffer.

Once an opcode has been extracted we check it to see if it requires an operand or not. Any operand
which is not exactly three or five characters in size needs an operand.

If the length of the opcode is three or five, then we lower case the first two characters and begin a
search for NOP, RTE, RTR, RTS, RESET, TRAPV. If those are found we set the noOperand flag so that
we don’t attempt to extract any operands for these instructions.

RESET and TRAPV are the only 5 character instructions, beginning with ‘RE’ and ‘TR’ that do not
have operands, so if we have a 5 character opcode that begins with either of those two characters,
then we definitely have to set the flag.

355
356 ;−−
357 ; Copy any ope rand from t h e i n p u t B u f f e r t o t h e o p e r a n d B u f f e r . I f t h i s
358 ; opcode has no operands , do n o t h i n g , o t h e r w i s e e x t r a c t t h e ope rand
359 ; i n t o t h e b u f f e r . A4 i s t h e i n p u t b u f f e r p o i n t e r .
360 ; I f t h e ope rand ends wi th a comma , t h e n we need t o s e t t h e c o n t i n u e
361 ; f l a g f o r t h e n e x t l i n e t o c o n t i n u e t h e ope rand .
362 ;−−
363 e x t r a c t O p e r a n d
364 b t s t # noOperand , d5 ; Do we need t o do a n y t h i n g ?
365 bne . s e x t r a c t O p e r a n d D o n e ; No , s k i p
366
367 ;−−
368 ; We have an operand , copy i t t o t h e o p e r a n d B u f f e r . Keep a c o u n t o f
369 ; c h a r s c o p i e d i n D0 .
370 ;−−
371 b c l r # c o n t i n u e , d5 ; Assume no c o n t i n u a t i o n
372 l e a o p e r a n d B u f f e r +2 , a5 ; Our o u t p u t b u f f e r
373 b s r doCopyText ; Copy ope rand
374 cmpi . b #comma,−1(a5) ; L a s t c h a r a c t e r a comma?
375 bne . s e x t r a c t O p e r a n d D o n e ; No , s k i p
376 b s e t # c o n t i n u e , d5 ; We have a c o n t i n u a t i o n
377
378 e x t r a c t O p e r a n d D o n e
379 r t s

Listing 3.18: ASMReformat Source - Extracting Operands

The subroutine above extracts operands from the input line. It does this by calling the copyText
subroutine. Operands are copied from the input buffer to the operand buffer.

We obviously do not need to extract an operand if the flag that says not to is set. After extracting
the operand, if the final character was a comma (,) then we need to continue extracting this operand
on the following line(s) of the input file, so we set the continue flag before continuing.

380
381 ;−−
382 ; Copy any comment from t h e i n p u t B u f f e r t o t h e commentBuffer . A4 i s
383 ; t h e i n p u t b u f f e r p o i n t e r . R e t u r n s wi th A5 one p a s t t h e l a s t c h a r .
384 ; Never r e t u r n s h e r e though .
385 ;−−
386 ex t rac tComment
387 b s e t # inComment , d5 ; We a r e do ing comments
388 l e a commentBuffer +2 , a5 ; Our o u t p u t b u f f e r

32 Chapter 3. ASMReformat Utility

389 b r a doCopyText ; Copy comment

Listing 3.19: ASMReformat Source - Extracting Comments

The subroutine above extracts comments from the input line. It does this by calling the copyText
subroutine after setting a flag that indicates that we are in a comment. Comments are copied from
the input buffer to the comment buffer.

The flag set indicates to the copyText code that all characters are valid, even spaces, tabs, etc - up
to the terminating linefeed.

The hard work of extracting labels, opcodes etc is done by the code that follows.

390
391 ;−−
392 ; Copy t e x t from t h e i n p u t b u f f e r (A4) t o t h e o u t p u t b u f f e r (A5) and
393 ; keep a c o u n t i n D0 . Scan f o r w a r d i n t h e i n p u t u n t i l we h i t a non−
394 ; s p a c e / t a b c h a r a c t e r . Newline i n d i c a t e s t h e b u f f e r end .
395 ; A1 i s a p o i n t e r t o t h e s t a r t o f t h e o u t p u t b u f f e r on e n t r y and w i l l
396 ; be used t o save t h e word c o u n t on c o m p l e t i o n .
397 ; Watch o u t f o r q u o t e s !
398 ; I f we a r e i n a comment , t h e n s imp ly scan u n t i l t h e end .
399 ;−−
400 copyText
401 b s r . s scanForward ; Lo c a t e n e x t v a l i d c h a r a c t e r
402 moveq #0 , d0 ; Coun te r
403
404 copyLoop
405 cmpi . b # l i n e f e e d , (a4) ; Done y e t ?
406 beq . s copyTextDone ; Yes , r e t u r n
407 b t s t # inComment , d5 ; Are we i n a comment ?
408 bne . s copyComment ; Yes , s k i p
409
410 ;−−
411 ; We a r e n o t i n a comment , so check f o r q u o t e s . I f we f i n d one we
412 ; must copy a l l c h a r a c t e r s u n t i l we g e t t o t h e end q u o t e . O t h e r w i s e
413 ; any s p a c e / t a b / n e w l i n e c h a r a c t e r w i l l end t h i s copy .
414 ;−−
415 cmpi . b # sQuote , (a4) ; S i n g l e q u o t e ?
416 beq . s c o p y S t r i n g ; Yes , s k i p
417 cmpi . b # dQuote , (a4) ; Double q u o t e ?
418 beq . s c o p y S t r i n g ; Yes , s k i p
419
420 ;−−
421 ; Not i n a quo t e d s t r i n g , a r e we done y e t ? I f not , copy t h e c u r r e n t
422 ; c h a r a c t e r and go around a g a i n .
423 ;−−
424 cmpi . b # space , (a4) ; Done y e t ?
425 b l s . s copyTextDone ; Yes , r e t u r n
426 b r a . s copyComment ; Copy one c h a r a c t e r
427
428 ;−−
429 ; We have found a quote , g r ab i t , t h e n copy & scan t o t h e end q u o t e .
430 ;−−
431 c o p y S t r i n g
432 move . b (a4) + , d1 ; Grab open ing q u o t e
433 move . b d1 , (a5) + ; Save open ing q u o t e

3.1 The Source Code 33

434 addq .w #1 , d0 ; Update c o u n t e r
435
436 ;−−
437 ; We have c o p i e d t h e s t a r t q u o t e and i n c r e m e n t e d c o u n t e r s & p o i n t e r s
438 ; so we a r e now r e a d y t o copy t h e r e m a i n i n g c h a r a c t e r s i n t h e qu o t ed
439 ; s t r i n g .
440 ;−−
441 copyCharLoop
442 move . b (a4) + , (a5) ; Copy c u r r e n t c h a r a c t e r
443 addq .w #1 , d0 ; Update c o u n t e r
444 cmp . b (a5) , d1 ; Copied c l o s i n g q u o t e ?
445 addq . l #1 , a5 ; Des t a d d r e s s , Z unchanged
446 bne . s copyCharLoop ; No , keep copy ing
447 b r a . s copyLoop ; S t r i n g done , c a r r y on
448
449 ;−−
450 ; I f we a r e i n a comment , we don ’ t c a r e what c h a r a c t e r s we r e a d as
451 ; a l l a r e r e q u i r e d up t o t h e t e r m i n a t i n g l i n e f e e d .
452 ;−−
453 copyComment
454 move . b (a4) + , (a5) + ; Copy c h a r a c t e r
455 addq .w #1 , d0 ; I n c r e m e n t c o u n t e r
456 b r a . s copyLoop ; Do some more
457
458 ;−−
459 ; At t h e end , s t o r e t h e word c o u n t a t t h e s t a r t o f t h i s b u f f e r .
460 ;−−
461 copyTextDone
462 move .w d0 ,−2(a1) ; Save t e x t l e n g t h
463 r t s

Listing 3.20: ASMReformat Source - Copying Input Source Lines Around

This subroutine reads the input and copies valid text to whatever buffer is pointed to by A5. On
entry, the input pointer A4 could be pointing anywhere in the input buffer, so in order to find a
valid starting point, we call out to scanForward to ignore anything that is not a printable ASCII
character. On return, (A4) is pointing at either a linefeed - indicating end of input, or at a valid
printable character.

D0 is used to count the characters in whichever field (label, opcode, operand, comment) that we are
extracting.

If the current character is a linefeed, we are done and we store D0 at the start of the output buffer -
which A1 is pointing to - and return to the caller.

Assuming we have not hit the end yet, we enter some convoluted code to make sure that what we
extract is valid. If we are in a comment, any character is allowed, so we skip off to copy the current
character from the input buffer to the output buffer that we are using just now. An easy case.

If we are not in a comment, we must check if we have one or other of the two quote characters as
the current character. In this case we are about to copy a string so again, all characters are allowed
until we come across the terminating quote character.

The code at copyString first copies the opening quote to the output buffer, and saves it in D1 so
that we can check for the end of the string.

Then we copy each of the following characters to the output buffer but note that we don’t update

34 Chapter 3. ASMReformat Utility

A5 using post increment addressing, like we do with A4. We check the character just copied for
a closing quote which sets the Z flag accordingly, then we update A5 which we can do without
affecting any of the flags. This allows us to make sure we copy over the closing quote and still be
able to check for when we have finished copying a string value.

If we are not copying a string then we only allow printable characters. If we have a space, or lower,
as the current input character, we are done and exit by storing D0 in the start of the output buffer.

464
465 ;−−
466 ; Scan f o r w a r d t o t h e n e x t non s p a c e / t a b c h a r a c t e r . A n e w l i n e i s t h e
467 ; end of t h e l i n e and t h a t w i l l c a u s e a r e t u r n . A c t u a l l y , we s im p ly
468 ; t e s t f o r a n y t h i n g l e s s t h a n of e q u a l t o a space , o t h e r t h a n a
469 ; l i n e f e e d and keep i n c r e m e n t i n g u n t i l we g e t some th ing e l s e .
470 ;
471 ; E x p e c t s A4 t o p o i n t i n t o t h e c u r r e n t i n p u t B u f f e r and e x i t s w i th A4
472 ; p o i n t i n g a t t h e n e x t non−s p a c e / t a b c h a r a c t e r , which might be a l i n e
473 ; f e e d .
474 ;−−
475 scanForward
476 cmpi . b # l i n e f e e d , (a4) ; Newline ?
477 beq . s scanDone ; Yes , done
478
479 cmpi . b # space , (a4) ; Space (o r l e s s) ?
480 b h i . s scanDone ; No , done
481
482 addq . l #1 , a4 ; I n c r e m e n t c u r r e n t P o i n t e r
483 b r a . s scanForward ; Keep s c a n n i n g
484
485 scanDone
486 r t s ; Done . (A4) i s t h e n e x t c h a r

Listing 3.21: ASMReformat Source - Scanning the Input Lines

This subroutine looks at the input characters and increments the input pointer register, A4, until we
hit either a linefeed or any character higher than space in the ASCII chart.

487
488 ;−−
489 ; We don ’ t have a comment o r b lank , nor do we have an ope rand t h a t has
490 ; been c o n t i n u e d ove r two (o r more) l i n e s , so we need t o e x t r a c t a l l
491 ; t h e d a t a from t h e i n p u t l i n e .
492 ;−−
493 e x t r a c t D a t a
494 b s r e x t r a c t L a b e l ; Get any l a b e l
495 b s r e x t r a c t O p c o d e ; Get opcode − s e t s noOperand
496 b s r e x t r a c t O p e r a n d ; g e t Operand − s e t s c o n t i n u e
497 b s r . s ex t rac tComment ; Get comments − s e t s inComment
498 b r a . s doLabe l ; Go do l a b e l p r o c e s s i n g

Listing 3.22: ASMReformat Source - Main Extraction Control Code

The code above calls out to the four field extraction subroutines described above, then on return,
skips to the output routines below where the reformatting takes place prior to writing out the newly
reformatted line.

499
500 ;−−

3.1 The Source Code 35

501 ; Some code t o w r i t e o u t some t e x t a t t h e c u r r e n t p o s i t i o n i n t h e
502 ; o u t p u t f i l e . On e r r o r , w i l l e x i t v i a e r r o r E x i t and n e v e r r e t u r n .
503 ; Assumes A0 has t h e c o r r e c t c h a n n e l ID and t h a t A1 p o i n t s t o a QDOS
504 ; s t r i n g r e a d y t o be p r i n t e d .
505 ;−−
506 doWri te
507 moveq # i o _ s s t r g , d0 ; Trap code
508 move .w (a1) + , d2 ; Word c o u n t
509
510 ;−−
511 ; Do a t r a p #3 and on ly r e t u r n t o t h e c a l l e r i f i t worked . O t h e r w i s e
512 ; e x i t back t o SuperBASIC wi th t h e e r r o r code .
513 ;−−
514 doTrap3
515 t r a p #3 ; Wr i t e t h e l i n e / b y t e
516 t s t . l d0 ; Ok?
517 bne e r r o r E x i t ; No , bad s t u f f happened .
518 r t s ; Back t o c a l l e r
519
520 doLineFeed
521 moveq # i o _ s b y t e , d0 ; Send a s i n g l e b y t e
522 moveq # l i n e f e e d , d1 ; Byte t o send
523 b r a . s doTrap3 ; Do i t

Listing 3.23: ASMReformat Source - Trap #3 Code

The code above is a small collection of TRAP #3 routines to write the output buffers, send linefeeds
etc.

524
525 ;−−
526 ; Copy a b u f f e r from t h e word c o u n t a t (A1) t o t h e b y t e s p a c e a t (A5)
527 ; t h i s i s used when we copy t h e v a r i o u s b u f f e r s t o t h e i n p u t B u f f e r
528 ; which we a r e u s i n g as an o u t p u t B u f f e r now !
529 ;
530 ; Uses A1 as t h e sou rce , A5 as t h e d e s t and D0 .W as a c o u n t e r .
531 ; C o r r u p t s A1 and D0 .W. A5 e x i t s a s t h e n e x t f r e e b y t e i n t h e b u f f e r .
532 ;−−
533 c o p y B u f f e r
534 move .w (a1) + , d0 ; Coun te r
535 beq . s copyBufferDone ; Noth ing t o do , r e t u r n
536 subq .w #1 , d0 ; A d j u s t f o r db ra
537
538 c o p y B u f f e r B y t e
539 move . b (a1) + , (a5) + ; Copy a b y t e
540 db ra d0 , c o p y B u f f e r B y t e ; And t h e r e s t
541
542 copyBufferDone
543 r t s ; Back t o c a l l e r

Listing 3.24: ASMReformat Source - Copying Buffers Around

The code above is called when we need to copy one of the input buffers holding labels, opcodes,
operands or comments, back into the output buffer at the appropriate character position.

544
545 ;−−

36 Chapter 3. ASMReformat Utility

546 ; Space f i l l t h e i n p u t B u f f e r p r i o r t o u s i n g i t a s t h e o u t p u t B u f f e r t o
547 ; w r i t e t h e r e f o r m a t t e d l i n e t o t h e o u t p u t f i l e .
548 ;−−
549 c l e a r B u f f e r
550 move .w #255 , d0 ; Coun te r f o r 256 l o n g s
551 l e a i n p u t B u f f e r , a0 ; Guess !
552 move .w # 0 , (a0) + ; No s t r i n g i n b u f f e r
553
554 c l e a r B u f f e r L o n g
555 move . l # $20202020 , (a0) + ; C l e a r one long
556 db ra d0 , c l e a r B u f f e r L o n g ; Do t h e r e s t
557 r t s

Listing 3.25: ASMReformat Source - Clearing the Input Buffer

We use the input buffer for our output buffer too, so before we start, we need to make sure that it is
space filled.

558
559 ;−−
560 ; L a b e l s g e t a l i n e o f t h e i r own , so we w i l l w r i t e o u t t h e l a b e l by
561 ; i t s e l f b e f o r e l o o k i n g a t t h e r e s t o f t h e s t u f f on t h e l i n e .
562 ;−−
563 doLabe l
564 l e a l a b e l B u f f e r , a1 ; Labe l word c o u n t
565 t s t .w (a1) ; Any l a b e l ?
566 beq . s doOpcode ; No , s k i p
567 move . l d e s t I d (a7) , a0 ; D e s t i n a t i o n c h a n n e l i d
568 b s r . s doWri te ; P r i n t o u t t h e l a b e l by i t s e l f
569 b s r . s doLineFeed ; And a l i n e f e e d

Listing 3.26: ASMReformat Source - Writing Labels

If we have extracted a label from the input source line, we write it out here, by itself and follow it
with a linefeed. Labels get written to the start of the output line, so we simply write the label out
from the label buffer where it can currently be found.

570
571 ;−−
572 ; I f we have an opcode , and n o r m a l l y we s h o u l d have one , t a b t o t h e
573 ; d e s i r e d p o s i t i o n and w r i t e i t o u t . I t i s n o t normal f o r an opcode
574 ; t o exceed t h e s p a c e a l l o c a t e d , so no ch e ck s a r e done h e r e .
575 ; We a lways c l e a r t h e i n p u t B u f f e r a t t h i s p o i n t .
576 ; We use D5 from h e r e on t o show i f we p r i n t e d a n y t h i n g and i f so , we
577 ; w i l l need a l i n e f e e d a f t e r w a r d s , o t h e r w i s e , no l i n e f e e d i s needed .
578 ;−−
579 doOpcode
580 b s r . s c l e a r B u f f e r ; We a lways do t h i s h e r e
581 b c l r # l f R e q u i r e d , d5 ; Noth ing p r i n t e d so f a r
582 l e a opcodeBuf fe r , a1 ; Source word c o u n t
583 t s t .w (a1) ; Got an opcode ?
584 beq . s doComment ; No opcode , no ope rand
585 b s e t # l f R e q u i r e d , d5 ; F l ag some th ing (t o be) p r i n t e d
586 l e a i n p u t B u f f e r +opcodePos +2 , a5 ; Des t b y t e a r e a
587 b s r . s c o p y B u f f e r ; Copy t h e opCode

Listing 3.27: ASMReformat Source - Writing Opcodes

3.1 The Source Code 37

Opcodes, if we have one, are copied from the opcode buffer to the input buffer at the desired
position, after clearing the input buffer of its current contents. If the opcode has no operands, we
skip down to checking for comments. After sending something to the output buffer, we set a flag to
show that we must print a linefeed when done.

588
589 ;−−
590 ; Wr i t e o u t an ope rand . Th i s may be a new one , o r a c o n t i n u a t i o n . I f
591 ; t h e ope rand e x c e e d s commentPos−2 t h e n add a c o u p l e o f s p a c e s t o t h e
592 ; o u t p u t l i n e b e f o r e t h e comment g e t s p r i n t e d . We use D6 .W t o ho ld
593 ; any e x t r a b y t e s used f o r use below .
594 ;
595 ; I f commentPos = 40 and ope randPos = 20 t h e n max ope rand s i z e i s
596 ; 40 − 20 − 1 = 19 b e f o r e we have t o e x t e n d t h e comment p o s i t i o n .
597 ;−−
598 doOperand
599 moveq #0 , d6 ; E x t r a b y t e c o u n t e r
600 l e a o p e r a n d B u f f e r , a1 ; Operand word c o u n t
601 t s t .w (a1) ; Do we have an ope rand ?
602 beq . s doComment ; No , s k i p
603 b s e t # l f R e q u i r e d , d5 ; Something p r i n t e d
604 move . l a1 , a4 ; Save b u f f e r a d d r e s s
605 l e a i n p u t B u f f e r + ope randPos +2 , a5
606 b s r . s c o p y B u f f e r ; Copy ope rand
607 move .w (a4) , d0 ; Operand s i z e
608 cmpi .w #commentPos−operandPos −1,d0 ; Check wid th
609 b l s . s doComment ; Narrow operand
610
611 doWideOperand
612 addq . l #2 , a5 ; A d j u s t A5
613 moveq #2 , d6 ; Two e x t r a b y t e s now

Listing 3.28: ASMReformat Source - Writing Operands

Operands, if we have one, get copied into the output buffer at the desired location. There are no
opcodes that are so long that they span from the opcode position over the operand position, so no
checks are done here.

If you decide to change the buffer positions then you might need to do some additional checks here.
Caveat emptor and all that!

Operands, on the other hand, might span well past the comment position, so, if they do, we add a
couple of extra spaces to the output and set D6 to show that we have a wide operand to cope with.

614
615 ;−−
616 ; I f we have a comment t h e n p r i n t i t a t t h e d e s i r e d p o s i t i o n . I f t h e
617 ; ope rand took t o o much s p a c e (above) t h e n o f f s e t t h e comment by a
618 ; c o u p l e o f e x t r a s p a c e s − as p e r D6 .W.
619 ; I f t h e r e i s no comment , t h e n s imp ly p r i n t a l i n e f e e d , i f r e q u i r e d .
620 ;−−
621 doComment
622 l e a commentBuffer , a1 ; Comment word c o u n t
623 t s t .w (a1) ; Do we have a comment ?
624 beq . s addLineFeed ; No , s k i p
625 b s e t # l f R e q u i r e d , d5 ; Something p r i n t e d
626

38 Chapter 3. ASMReformat Utility

627 ;−−
628 ; I f D6 i s non−zero , t h e n A5 i s s e t t o t h e c o r r e c t o u t p u t by te ,
629 ; o t h e r w i s e , s e t A5 t o t h e normal comment p o s i t i o n i n t h e b u f f e r .
630 ;−−
631
632 t s t .w d6 ; Zero = normal comment p o s i t i o n
633 bne . s c o m m e n t P o s i t i o n S e t ; Non−z e r o = A5 i s s e t c o r r e c t l y
634
635 setNormalOperandComment
636 l e a i n p u t B u f f e r +commentPos +2 , a5 ; D e s t i n a t i o n
637
638 c o m m e n t P o s i t i o n S e t
639 b s r c o p y B u f f e r ; Copy t h e comment

Listing 3.29: ASMReformat Source - Writing Comments

Comments either get printed at their desired position, or, if the operand was a wide one, wherever
they happen to find space on the output line. If D6 is zero, the desired position can be used,
otherwise, A5 is already set to the first available space on the output.

The comment is copied from the comment buffer to wherever A5 is pointing to in the output buffer.

640
641 addLineFeed
642 b t s t # l f R e q u i r e d , d5 ; Anyth ing p r i n t e d ?
643 beq readLoop ; No , r e a d n e x t i n p u t l i n e
644 move . b # l i n e f e e d , (a5) ; Tag on a l i n e f e e d
645
646 ;−−
647 ; By h e r e A5 i s t h e l i n e f e e d c h a r a t e r w r i t t e n t o t h e b u f f e r so we
648 ; can g e t t h e s i z e o f t h e t e x t now , q u i t e e a s i l y . The word c o u n t i s
649 ; t h e l a s t C h a r a c t e r (i n A5) minus t h e b u f f e r S t a r t (i n A1) minus 1 .
650 ;
651 ; For example :
652 ;
653 ; A1−−−> 012345
654 ; __NOPx <−−−A5
655 ;
656 ; x = LineFeed .
657 ; _ = Unknown / don ’ t c a r e .
658 ;
659 ; We need t o p r i n t 4 c h a r a c t e r s ’NOP’ p l u s l i n e f e e d , so 5−0−1 = 4 .
660 ;−−
661 l e a i n p u t B u f f e r , a1 ; B u f f e r word c o u n t
662 move . l a5 , d0 ; Copy
663 subq . l #1 , d0 ; Minus 1
664 sub . l a1 , d0 ; O f f s e t i n t o b u f f e r
665 move .w d0 , (a1) ; S t o r e i n b u f f e r

Listing 3.30: ASMReformat Source - End of Line Feed

If we have an opcode, operand and/or comment in the buffer, we need to print a linefeed after
writing the line out, so if the flag is set, we append a linefeed to the output buffer.

We also have to determine how wide the output buffer is, so, we do this by calculating A5−A1−1
and storing the result in the start of the buffer. The input buffer, now being used for output, is ready
to be printed.

3.1 The Source Code 39

666
667 ;−−
668 ; Wr i t e t h e r e f o r m a t t e d l i n e t o t h e o u t p u t c h a n n e l u s i n g t h e code i n
669 ; doWriteComment above . Th i s a l s o r e t u r n s t o t h e s t a r t o f readLoop .
670 ;−−
671 doWr i t eL ine
672 b r a doWriteComment ; P r i n t t h e l i n e & loop around

Listing 3.31: ASMReformat Source - End of Main Loop

This short piece of code prints the output buffer and skips back to the top of the main loop, ready to
process the next line from the input file.

673
674 ;−−
675 ; We have h i t an e r r o r so we copy t h e code t o D3 t h e n e x i t v i a a
676 ; f o r c i b l e remova l o f t h i s j o b . EXEC_W/EW w i l l d i s p l a y t h e e r r o r i n
677 ; SuperBASIC , b u t EXEC/EX w i l l n o t .
678 ;−−
679 a l l D o n e
680 moveq #0 , d0
681
682 e r r o r E x i t
683 move . l d0 , d3 ; E r r o r code we want t o r e t u r n
684
685 ;−−
686 ; K i l l m ys e l f when an e r r o r was d e t e c t e d , o r a t EOF .
687 ;−−
688 s u i c i d e
689 moveq # m t _ f r j o b , d0 ; Th i s j o b w i l l d i e soon
690 moveq #me , d1
691 t r a p #1

Listing 3.32: ASMReformat Source - End of Job Code

When we hit EOF on the input file, we exit the main loop and arrive at allDone where we flag no
errors, and then the job kills itself.

Had we hit any errors in processing the input or output files, the main loop would exit via errorExit
where we set D3 as required by QDOSMSQ, and then kill the job.

Assuming we executed the utility using EW we would be able to see the error message.

692
693 ;−−
694 ; V a r i o u s b u f f e r s . Having them h e r e keeps them s e p a r a t e from code and
695 ; makes i t e a s i e r f o r d i s a s s e m b l e r s t o decode t h e code w i t h o u t ha v i ng
696 ; t o worry a b o u t embedded d a t a !
697 ;−−
698
699 i n p u t B u f f e r
700 ds .w 512+1 ; I n p u t − 1024 b y t e s + c o u n t
701
702 l a b e l B u f f e r
703 ds .w 128+1 ; Labe l − 256 b y t e s + c o u n t
704
705 o p c o d e B u f f e r
706 ds .w 10+1 ; Opcode − 20 b y t e s + c o u n t

40 Chapter 3. ASMReformat Utility

707
708 o p e r a n d B u f f e r
709 ds .w 128+1 ; Operand − 256 b y t e s + c o u n t
710
711 commentBuffer
712 ds .w 246+1 ; Comment − 492 b y t e s + c o u n t

Listing 3.33: ASMReformat Source - Various Buffers

And finally - you will be glad to hear - these are the various buffers used by the utility to store the
input (and output) as well as temporary storage for the 4 separate fields in an assembly source line.

3.2 Finally

Are you wondering about some of the labels used in the above source code? Do they look odd? or
simply too long etc? Well, the reason for that is that this code was used to reformat itself, so I was
testing with short and long labels and found too many problems, so I ended up just putting labels
on an output line by themselves.

Hopefully you will find this utility useful. I know I have done - so far!

One last thing, on Linux, the C++ version of this utility compiled down to around 38 KB - which is
not much for a useful utility. However, it does use a number of shared libraries to carry out a lot of
the hard work and those are not included in the 38 Kb.

The entire utility on my QPC setup, assembled to a total of 2,728 Bytes!

4. Using the MC68020

As mentioned in the last issue, I am planning on upgrading the eComic to use the 68020 instructions
available in QPC and in George’s Gwass assembler. This currently means that unless you have a
Q40 or Q60 to hand, you will need to run the programs and assembler on QPC. Is this a problem I
wonder?

4.1 Overview

Here are a few brief details of what a proper 68020 has to offer:

• Full support for 32 bit operations.
• A full 32 bit external data bus which can also cope with 16 or 8 bit peripherals.
• 32 bit offsets in branch instructions.
• 32 bit displacements in indexed addressing modes.
• Two new addressing modes are provided, which allow indexed address with two levels of

indirection.
• Word and Long memory accessing need no longer be on an even address.
• New bit field instructions.
• Instructions to convert between character and decimal numbers.
• And lots, lots more!

4.2 Addressing Modes

The addressing modes of the 68008 are mostly familiar, or should be by now, however, here is a
reminder of those modes, plus the new modes available in the 68020. The mode number given is
that coded into the mode bits of the effective address in the various instructions. (But you don’t
really need to know this!)

In the following descriptions, I’ve taken the wording as is from the Motorola Programmers’ Manual

42 Chapter 4. Using the MC68020

- hence the strangeness of some of the wording. The examples, however, are mine.

4.2.1 Data Register Direct

Mode zero. The effective address specifies the data register that the contains the operand. For
example move.w #1,d0 the destination address is Data Register Direct.

4.2.2 Address Register Direct

Mode 1. The effective address specifies the address register that the contains the operand. For
example move.l $c0ffee,a3. The destination effective address is A3 and is indeed Address
Register Direct.

4.2.3 Address Register Indirect

Mode 2. The effective address specifies the address register that the contains the operand in memory.
For example move.w (a3),d7 where A3 holds the address where the operand, a word of data, is to
be found.

4.2.4 Address Register Indirect with Post-Increment

Mode 3. In the address register indirect with postincrement mode, the operand is in memory.
The effective address field specifies the address register containing the address of the operand in
memory.

After the operand address is used, it is incremented by one, two, or four depending on the size of
the operand: byte, word, or long word, respectively.

For example move.w (a0)+,d0 will read the word value from the address held in A0 into D0 and
then will add two - the size of a word - to A3.

If the address register is a7, the stack pointer, then byte sized operations cause a7 to be incremented
by 2, rather than by 1. For example move.b d0, (a7)+ will cause A7 to be incremented by two to
keep it even.

The address register in question retains the new incremented value after the instruction.

4.2.5 Address Register Indirect with Pre-Decrement

Mode 4. In the address register indirect with predecrement mode, the operand is in memory.
The effective address field specifies the address register containing the address of the operand in
memory.

Before the operand address is used, it is decremented by one, two, or four depending on the operand
size: byte, word, or long word, respectively.

For example move.l -(a0),d0 causes A0 to be decremented by 4 and the long word found at the
new address will be moved into D0.

If the register is A7, the stack pointer, then byte sized operations cause A7 to be incremented by 2,
rather than by 1. For example move.b d0,-(a7).

The address register in question retains the new decremented value after the instruction.

4.2 Addressing Modes 43

4.2.6 Address Register Indirect with Displacement

Mode 5. In the address register indirect with displacement mode, the operand is in memory.

The sum of the address in the address register, which the effective address specifies, plus the sign-
extended 16-bit displacement integer in the extension word is the operand’s address in memory.

Displacements are always sign-extended to 32 bits prior to being used in effective address calcula-
tions.

For example move.l d0,$10(a1) will sign-extend the 16 bit displacement word (10hex) to a full
32 bit signed value, add it to the address held currently in A1 - without affecting the actual address
held in the register - and the long value in D0 will then be stored there.

The displacement can of course, be negative, move.l d0,-$14(a1).

The displacement word is 16 bits, however, it will always be sign extended to 32 bits prior to the
addition to the address register.

The address register in question retains its current value after the instruction - it is not adjusted in
any way.

4.2.7 Address Register Indirect with Index (8 bit Displacement)

Mode 6. This addressing mode requires one extension word that contains an index register indicator
and an 8-bit displacement. The index register indicator includes size and scale information.

In this mode, the operand is in memory. The operand’s address is the sum of the address register’s
contents; the sign-extended displacement value in the extension word’s low-order eight bits; and
the index register’s sign-extended contents (possibly scaled).

The user must specify the address register, the displacement, and the index register in this mode -
none of these are optional, only the scaling factor is optional and will default to 1 if omitted.

For example move.w 4(a6,d7.W),d3. In this example, the 8 bit displacement value, 4, is sign
extended to 32 bits and added to the address held in A6. The value in D7 is also sign extended to 32
bits and added to the above calculation. The word value at this calculated address is copied into D3.

The calculated address is not stored anywhere, it is used and discarded. The value in the address
register, A6 in this case, is not affected.

The index register, D7 may, optionally, have its value scaled - which the example code shown below
attempts to explain.

It seems,according to the Programmers’ manual, that we should be writing the above example as
move.w (4,a6,d7.W),d3 instead. Luckily GWASS is happy with the old style1 as well as the
new.

As mentioned, both the 8 bit displacement and the index register, if word sized, will be sign
extended to 32 bits before being used in effective address calculations.

As for the scaling mode mentioned above, do you remember last issue’s jump tables article? Well,
here’s a reminder2:

1 g o t _ g o o d _ o p t i o n
2 subq . b # ’0 ’ , d0 ; D0 . B = 0 t o 9 as a number

1My preferred style!
2Corrected as per George’s comments!

44 Chapter 4. Using the MC68020

3 e x t .w d0 ; Now e x t e n d t o a word
4 l s l .w #1 , d0 ; Conve r t t o a t a b l e o f f s e t
5 l e a JumpTable , a2 ; Where t h e jump t a b l e l i v e s
6 move .w 0(a2 , d0 .w) , d0 ; F e t c h t h e o f f s e t word
7 j s r (a2 , d0 .w) ; Jump t o t h e c o r r e c t s u b r o u t i n e

Listing 4.1: Jump Table - Old Style

Now, with the 68020 and scaling, there’s no need to do the separate doubling of the table’s index
(lsl.w #1,d0) to calculate the correct offset into the table as the scaling does this automatically
and without changing d0. The above extract would be as written as follows:

1 g o t _ g o o d _ o p t i o n
2 subq . b # ’0 ’ , d0 ; D0 . B = 0 t o 9 as a number
3 l e a JumpTable , a2 ; Where t h e jump t a b l e l i v e s
4 move .w 0(a2 , d0 .w∗ 2) , d0 ; F e t c h t h e o f f s e t word
5 j s r (a2 , d0 .w) ; Jump t o t h e c o r r e c t s u b r o u t i n e

Listing 4.2: Jump Table - New Style

You will notice that I have specified the displacement (0) and both the address (A2) and index
register (D0.W) as required.

4.2.8 Address Register Indirect with Index (Base Displacement)

Also mode 6. This addressing mode requires an index register indicator and an optional 16- or
32-bit sign-extended base displacement. The index register indicator includes size and scaling
information. The operand is in memory.

The operand’s address is the sum of the contents of the address register, the base displacement,
signed extended if necessary, and the scaled contents of the sign-extended index register.

In this mode, the address register, the index register, and the displacement are all optional.

The effective address is zero if there is no specification. This mode can provide a data register
indirect address when there is no specific address register and the index register is a data register.

The example for this addressing mode is similar to the one above, however you don’t need to
specify all of the fields and scaling. For example we can change our addressing mode from move.w
0(a2,d0.w*2),d0 to move.w (a2,d0.w*2),d0 where the displacement is optional.

As mentioned, this mode can give you a pseudo Data register Indirect addressing mode, simply
by leaving off most of the optional fields. For example, under the 68020, the following is valid
move.w (d0.l),d0 - assuming that D0.L contains a valid ‘address’ of course.

4.2.9 Memory Indirect Postindexed

Also mode 6. In this mode, both the operand and its address are in memory. The processor calculates
an intermediate indirect memory address using a base address register and base displacement.

The processor accesses a long word at this address and adds the index operand (Xn.SIZE*SCALE)
and the outer displacement to yield the effective address.

Both displacements and the index register contents are sign-extended to 32 bits.

In the syntax for this mode, square brackets [] enclose the values used to calculate the intermediate
memory address.

4.2 Addressing Modes 45

All four user-specified values are optional.

Both the base and outer displacements may be null, word, or long word. When omitting a
displacement or suppressing an element, its value is zero in the effective address calculation.

For example move.l ([8,a6],d4.w*4,96),d0 will calculate a temporary address in memory by
adding the sign-extended base displacement (8) and the address register (A6). This address will
contain a long word which is read, added to the sign-extended index register (D4.W*4), plus the
outer displacement (96). Phew!

The immediate question that comes to my mind is “why?” However, there must have been a reason
for this addressing mode to be built in silicon.

4.2.10 Memory Indirect Preindexed

Mode 6 again. In this mode, both the operand and its address are in memory. The processor calcu-
lates an intermediate indirect memory address using a base address register, a base displacement,
and the index operand (Xn.SIZE*SCALE).

The processor accesses a long word at this address and then adds the outer displacement to yield
the effective address.

Both displacements and the index register contents are sign-extended to 32 bits.

In the syntax for this mode, brackets enclose the values used to calculate the intermediate memory
address.

All four user-specified values are optional.

Both the base and outer displacements may be null, word, or long word. When omitting a
displacement or suppressing an element, its value is zero in the effective address calculation.

For example move.l ([18,a5,d4.w*4],200),d0 will calculate a temporary address in memory
by adding the sign-extended base displacement (18), the address register (A5) and the sign-extended
index register (D4.W*4). The long word at that address will then be read and added to the outer
displacement (200) and whatever long word is found at that address will be copied into D0. Phew!

The immediate question that again comes to my mind is “why?”

4.2.11 Absolute Short

Mode 7 Submode 0. In this addressing mode, the operand is in memory, and the address of the
operand is in the extension word. The 16-bit address is sign-extended to 32 bits before it is used.

For example move.w $1234,d4 takes 2 words of memory. The first defines the opcode and the
second word defines the short address. The second word is read, sign-extended to 32 bits and the
word, in this example, at that address is copied into D4.

Note that addresses between $0000 and $7fff sign-extend to the same values, but addresses from
$8000 to $ffff sign-extend to actual addresses of $ffff8000 to $ffffffff. So, effectively, you can only
use this addressing mode on the lowest 32KB of memory and, if you have enough RAM, the upper
32KB of memory.

46 Chapter 4. Using the MC68020

4.2.12 Absolute Long

Mode 7 Submode 1. In this addressing mode, the operand is in memory, and the operand’s address
occupies the two extension words following the instruction word in memory.

The first extension word contains the high-order part of the address; the second contains the
low-order part of the address.

For example move.b $12345678,d4 takes 3 words of memory. The first defines the opcode, the
second word defines the high half of the address $1234 and, finally, the third word defines the low
half of the address $5678. The two words are read, and the byte, in this example, at that address is
copied into D4.

4.2.13 Program Counter Indirect with Displacement

Mode 7 Submode 2. In this mode, the operand is in memory. The address of the operand is the sum
of the address in the program counter (PC) and the sign-extended 16-bit displacement integer in the
extension word. The ‘(PC)’ part of the opcode can be left off as it is optional.

The value in the PC is the address of the extension word defining the offset.

This is a program reference allowed only for reads.

For example, lea jumptable(pc),a2 will set A2 to the position independent location of the label
jumptable no matter which address in RAM the code is running at. In memory, there are two
words. The first defines the opcode, the second, which is where the Program Counter is pointing, is
the displacement to the given label from the current address of the PC.

The example could also have been written as lea jumptable,a2

4.2.14 Program Counter Indirect with Index (8-Bit Displacement)

Mode 7 Submode 3. This mode is similar to the mode described in Address Register Indirect with
Index (8 bit Displacement) on page 43 , except the PC is the base register.

The operand is in memory.

The operand’s address is the sum of the address in the PC, the sign-extended displacement integer
in the extension word’s lower eight bits, and the sized, scaled, and sign-extended index operand.

The value in the PC is the address of the extension word.

This is a program reference allowed only for reads.

The user must include the displacement, the PC, and the index register when specifying this
addressing mode.

For example move.w jumptable(pc,d0.w*2),d0 could have been used in our jump table ex-
ample above as it does not require the use of a base register to access the table to fetch the
offset.

4.2.15 Program Counter Indirect with Index (Base Displacement)

Mode 7 Submode 3 again. This mode is similar to the mode described in Address Register Indirect
with Index (Base Displacement) on page 44, except the PC is used as the base register.

It requires an index register indicator and an optional 16 or 32 bit sign-extended base displacement.

4.2 Addressing Modes 47

The operand is in memory.

The operand’s address is the sum of the contents of the PC, the base displacement, and the scaled
contents of the sign-extended index register.

The value of the PC is the address of the first extension word.

This is a program reference allowed only for reads.

For example lea jumptable(PC,d0.w*2),a3 will work out the address of the D0th word in the
table at label jumptable and copy it into A3.

In this mode, the PC, the displacement, and the index register are optional. The user must supply
the assembler notation ZPC (a zero value PC) to show that the PC is not used. This allows the user
to access the program space without using the PC in calculating the effective address.

The user can access the program space with a data register indirect access by placing ZPC in the
instruction and specifying a data register as the index register.

I have to admit that I’m not convinced that a PC or zero is going to be useful, certainly not in
program independent code.

4.2.16 Program Counter Memory Indirect Postindexed Mode

Mode 7 Submode 3 also. This mode is similar to the mode described in Memory Indirect Postindexed
on page 44, but the PC is the base register.

Both the operand and operand address are in memory.

The processor calculates an intermediate indirect memory address by adding a base displacement
to the PC contents. The processor accesses a long word at that address and adds the scaled contents
of the index register and the optional outer displacement to yield the effective address.

The value of the PC used in the calculation is the address of the first extension word.

This is a program reference allowed only for reads.

In the syntax for this mode, brackets enclose the values used to calculate the intermediate memory
address. All four user-specified values are optional.

The user must supply the assembler notation ZPC (a zero value PC) to show the PC is not used.
This allows the user to access the program space without using the PC in calculating the effective
address.

Both the base and outer displacements may be null, word, or long word. When omitting a
displacement or suppressing an element, its value is zero in the effective address calculation.

For an example, see Memory Indirect Postindexed on page 44 and replace the address register with
‘PC’.

4.2.17 Program Counter Memory Indirect Preindexed Mode

Mode 7 Submode 3 also again! This mode is similar to the mode described in Memory Indirect
Preindexed on 45, but the PC is the base register.

Both the operand and operand address are in memory.

The processor calculates an intermediate indirect memory address by adding the PC contents, a
base displacement, and the scaled contents of an index register. The processor accesses a long

48 Chapter 4. Using the MC68020

word at immediate indirect memory address and adds the optional outer displacement to yield the
effective address.

The value of the PC is the address of the first extension word.

This is a program reference allowed only for reads.

In the syntax for this mode, brackets enclose the values used to calculate the intermediate memory
address. All four user-specified values are optional. The user must supply the assembler notation
ZPC showing that the PC is not used.

This allows the user to access the program space without using the PC in calculating the effective
address.

Both the base and outer displacements may be null, word, or long word. When omitting a
displacement or suppressing an element, its value is zero in the effective address calculation.

For an example, see Memory Indirect Preindexed on page 45 above and replace the address register
with ‘PC’.

4.2.18 Immediate Data

Mode 7 Submode 4. In this addressing mode, the operand is in one or two extension words.

For example, move.l #100,d0. After this instruction has executed, D0 will contain the value
100decimal in all 32 bits.

That’s it for the complete set of addressing modes. Next time, our exploration of the 68020
instructions will take a good look at the various Bit Field Instructions.

5. Image Credits

The front cover image on this ePeriodical is taken from the book Kunstformen der Natur by German
biologist Ernst Haeckel. The book was published between 1899 and 1904. The image used is of
various Polycystines which are a specific kind of micro-fossil.

I have also cropped the image for use on each chapter heading page.

You can read about Polycystines on Wikipedia and there is a brief overview of the above book,
also on Wikipedia, which shows a number of other images taken from the book. (Some of which I
considered before choosing the current one!)

Polycystines have absolutely nothing to do with the QL or computing in general - in fact, I suspect
they died out before electricity was invented - but I liked the image, and decided that it would make
a good cover for the book and a decent enough chapter heading image too.

Not that I am suggesting, in any way whatsoever, that we QL fans are ancient.

https://en.wikipedia.org/wiki/Polycystine
https://en.wikipedia.org/wiki/Kunstformen_der_Natur

	1 Preface
	1.1 Feedback
	1.2 Subscribing to The Mailing List
	1.3 Contacting The Mailing List

	2 Feedback on Issue 3
	2.1 BubbleSort
	2.1.1 Wolfgang Lenerz
	2.1.2 George Gwilt
	2.1.3 Program Content
	2.1.4 Program Coding
	2.1.5 A Suggested Alternative Program

	2.2 Multiprint
	2.2.1 Wolfgang Lenerz

	2.3 HexDump
	2.3.1 Wolfgang Lenerz
	2.3.2 George Gwilt

	2.4 Jump tables
	2.4.1 George Gwilt

	3 ASMReformat Utility
	3.0.1 Settings
	3.0.2 Usage of ASMReformat
	3.0.3 Field Extraction
	3.1 The Source Code
	3.2 Finally

	4 Using the MC68020
	4.1 Overview
	4.2 Addressing Modes
	4.2.1 Data Register Direct
	4.2.2 Address Register Direct
	4.2.3 Address Register Indirect
	4.2.4 Address Register Indirect with Post-Increment
	4.2.5 Address Register Indirect with Pre-Decrement
	4.2.6 Address Register Indirect with Displacement
	4.2.7 Address Register Indirect with Index (8 bit Displacement)
	4.2.8 Address Register Indirect with Index (Base Displacement)
	4.2.9 Memory Indirect Postindexed
	4.2.10 Memory Indirect Preindexed
	4.2.11 Absolute Short
	4.2.12 Absolute Long
	4.2.13 Program Counter Indirect with Displacement
	4.2.14 Program Counter Indirect with Index (8-Bit Displacement)
	4.2.15 Program Counter Indirect with Index (Base Displacement)
	4.2.16 Program Counter Memory Indirect Postindexed Mode
	4.2.17 Program Counter Memory Indirect Preindexed Mode
	4.2.18 Immediate Data

	5 Image Credits

